Homage to the squished mosquito

This work comes from a student* in my field biology class. Part of the course includes students keeping a “field journal“, and that assignment allows an opportunity for students to express their thoughts and observations about nature in many different ways, from writing, to art, and poetry.

A mosquito, before the squish. (photo by Alex Wild, reproduced here with permission)

A mosquito, before the squish. (photo by Alex Wild, reproduced here with permission)

 

O squished mosquito, you omnivorous parasite,

Why could nectar not quench your hunger, like your male counterpart?

Why must you thirst for my blood?

 

Of course, you need blood for egg production,

But to what lengths will you go to continue your lineage?

Was it my personality that drew you in? Or simply my CO2 expulsion?

 

Your ultimate death has left me with no answers;

Only a bump on my skin filled with histamine and regret.

 

Your short life makes me itch to know more about who you were

…or perhaps that’s just the anticoagulant in your saliva.

 

While the swelling in my arm may decrease,

My pining for you never will.

 

R.I.P., mosquito

2014-2014

Mosquito

 

What does this poem tell me, as an instructor?

It tells me that students can express natural history and biology in many different ways.

It makes me think that the student will remember the basics of mosquito biology a lot more than had this been on a multiple choice or short-answer examination.

It shows the power of allowing emotion to find its tendrils into science. We ought to embrace this a lot more.

 

*the student shall remain nameless until after the course is finished, but will eventually be credited appropriately

Trophic cascades in fragmented forests

Many birds eat insects and spiders. Some of these insects and spider are themselves predators, feeding on critters lower down in the food web. Some of the insects that are fed upon by birds, or other predators, also play important roles in forest, such as munching upon the fresh, green leaves of young trees (here’s a reminder).

Munch, munch, munch. The hungry caterpillar. (photo by Sean McCann, reproduced here with permission)

Munch, munch, munch. The hungry caterpillar. (photo by Sean McCann, reproduced here with permission)

These interactions are ongoing, all the time, in forests around the world. These forests, however, are changing in important ways. Some of them are getting smaller and smaller as humans continue to encroach on the land, via urbanization or agriculture. This results in a ‘fragmented’ landscape. A landscape with small forest patches, perhaps no bigger than your back yard. A landscape with larger forests, perhaps one in which you could get lost in. These forests are themselves connected to each other –sometimes directly by a corridor or hedgerow.

This is the context for PhD student Dorothy Maguire’s research. Within that context, Dorothy tackled a fascinating project, one that was just recently published. In this work, Dorothy and co-authors (including me, an undergrad at that time, Thomas Nicole, and McGill Professor Elena Bennett) put cages around small trees in different types of forests SW of Montreal. The cages (made of chicken wire) were in place to test the effects of ‘predator exclusions’ on the insects and spiders occurring on saplings. The prediction is that if you exclude larger predators, such as birds, this may allow a ‘release’ of other insects and spiders. In turn, this release may have trickle-down effects on an important process occurring in young trees: herbivory. For example, if a predator is more common because it’s not being eaten by birds, perhaps it will eat more caterpillars, which may mean the leaves on trees will be eaten less frequently. In ecology this is dubbed a ‘trophic cascade’. Dorothy did this work in the context of fragmented forests, and she worked in forests that were either small and isolated from other forests, or in forests that were large and connected to other forests. This was done because there’s an expectation that these ecological effects will be different depending on the degree of fragmentation happening on the landscape. For example, insectivorous birds may decrease in abundance in small, isolated patches, which means their effects on insect prey (and perhaps herbivory) may be reduced relative to effects in larger patches of forest.

Dorothy Maguire, working in a forest fragment.

Dorothy Maguire, working in a forest fragment.

During one summer field season, Dorothy and Thomas wrapped up some small sugar maple trees in chicken wire, left some alone as controls, counted insects and spiders over the summer months, and measured herbivory on the trees themselves. As expected, the effects of the ‘cage’ was significant: when you put a cage around a tree, you end up with more arthropods living on those trees. This confirms other papers which report a similar effect: insectivorous birds (and perhaps other vertebrate predators) have a significant, and meaningful impact on the insects and spiders living on trees. Or, stated another way, birds eat critters living on trees, and without these birds, there would certainly be more arthropods around!

Dorothy did not uncover a strong effect on the process of insect herbivory: although more insects and spiders were living in the trees protected by chicken wire, the leaves themselves were not affected. This could be because more insect predators were around, and thus compensating for the lack of birds, and eating just as many herbivorious insects (e.g., caterpillars) as the birds might have eaten.

The lanscape of southern Quebec. Lots of agriculture, some patches of forest.

The lanscape of southern Quebec. Lots of agriculture, some patches of forest.

Scaling up to the landscape context, there were no overall significant effects of the cage treatments in relation to the forest type, nor was the level of herbivory dependent on the landscape context. The general results for large, connected patches were no different than for small, isolated patches. However, the magnitude of the effect was marginally affected by the landscape context for the cage exclusion: vertebrate predator may have a more significant impact in smaller, isolated patches.

As with all research projects, this work resulted with as many questions as answers, which is equally frustrating and fascinating. It’s clear that vertebrate predators are important in these systems, but more work is needed to fully assess whether these effects are truly affected by the degree of forest fragmentation on the landscape. The lack of effects on the process of herbivory itself was equally intriguing – there are clearly many complex interactions occurring on small maple trees. Some of these interactions involve top-down predation events, but there are likely a suite of ‘bottom-up’ effects that are also influencing the system.

Reference:

MAGUIRE, D. Y., NICOLE, T., BUDDLE, C. M. and BENNETT, E. M. (2014), Effect of fragmentation on predation pressure of insect herbivores in a north temperate deciduous forest ecosystem. Ecological Entomology. doi: 10.1111/een.12166

Meet the lab: Sarah Loboda

This is the second in a series of posts that will introduce the members of the arthropod ecology lab. This one is about Sarah Loboda:

I am not one of those people who can reflect back on my childhood with memories of chasing butterflies with a net. Instead, I could be found shouting loudly when seeing a spider in the bathtub. Things change… today I study community ecology of Arctic arthropods, and have a deep passion for arthropod of all kinds, from spiders to butterflies and flies.

Sarah, with a butterfly net.

Sarah, with a butterfly net.

My interest in entomology began as a challenge, and I love challenges! When I was an undergrad at Université du Québec à Rimouski, Québec, a tackled the big challenge of learning to identify insects. During my undergrad, I participated in several research projects where I could encounter biodiversity of insects and spiders and I developed a curiosity and a fascination about arthropods, particularly those living in extreme Arctic environments. Arthropods are ectotherms, yet they survive, year-round, in a region where the climate is very harsh. I quickly realized that the taxonomy was not the only interesting aspect in entomology. I wanted to identify arthropods in order to do research on community ecology. During the final year of undergrad in Rimouski, I decided to do a research project on the community ecology of spiders in salt marshes. As part of this project, I met Chris Buddle who encouraged my passion for entomology and the Arctic and I was lucky to do a Master’s project on spiders in the Canadian North as part of the Northern Biodiversity Program.

I take all opportunities to do outreach, and talk about insects and spiders with anyone who is interested. I am also involved in different societies, including the Entomological Society of Canada, and the Entomological Society of Québec, for which I’m the student representative. I love to volunteer and organize activities for members. Being the mother of two children, I also like to share my passion about arthropods with my kids, their friends and classmates in schools or daycares.

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

I have just started the second year of my Ph.D. I work with the veritable goldmine of data that has been collected from Zackenberg (northeast Greenland), where a long term monitoring program of arctic biodiversity has existed since 1996. My primary research objective is to assess temporal changes of the Arctic fly communities in this region, using the Muscidae and Phoridae families as model study taxa. The second objective of my research project will be to assess phenotypic and genetic changes over the last two decades in two species of Arctic muscids from Zackenberg. For this project, I am co-supervised by Jade Savage, a muscids expert from Bishop’s University, and Toke Høye from Aarhus University.