Tag Archives: spiders

Spider cakes!

My graduate students are a very talented bunch – they are intelligent, creative, and have a good sense of humour.  Some of our lab group celebrated birthdays recently, and in honour of this, we had two cakes earlier this week.  The first, made by MSc student Sarah Loboda, is the VERY BEST SPIDER CAKE I have ever seen (or eaten!).  Check this out:

Spider Cake!

Of course, let’s discuss how anatomically correct that cake is!  Two body parts, pedicel, eight legs (coming from the cephalothorax, of course), and a bunch of eyes.

Spider cake! (eyes0

As you may know, most spiders in Canada have eight eyes, but since some do have six, I find it quite acceptable that this spider has six eyes.  Furthermore, not all spider eyes are identical so it is appropriate to have two kinds represented on the cake.  Well done, Sarah.

And in case that STUNNING MASTERPIECE isn’t enough, another student (Dorothy Maguire)  made a cake that is a very good approximation for the female epigynum of wolf spiders in the genus Pardosa.

Pardosa epigynum

And not just any Pardosa:  this is diagnostically similar to one of the species that graduate student Katie Sim is working on!  Incredible!

….want some proof – look at this image, taken from Dondale & Redner’s text on the Lycosidae of Canada.  Enough said.

Pardosa concinna epigynum

The laboratory mascot is growing older, just like me.

Time marches on.

In my laboratory, I can judge the years by the growth of our lab’s mascot, a Chilean Rose-hair tarantula named “Harriet” (but who also goes by the name of Grillonthosaur).  I was away last week, but when I returned to the laboratory on Monday morning, my students were excited to tell me that Harriet is a little bigger than before I left.  She moulted, and now has a shiny new coat.

Our lab mascot, with her shiny new coat!

The story of Harriet is kind of amazing.  Before Harriet was our laboratory’s mascot, she was the pet of an enthusiastic undergraduate student at McGill.  This student loved entomology, and did a project in my laboratory about four months after I started as a shiny-new tenure-track assistant professor.   When this student left Montreal, she gave Harriet to me since she could not take the spider with her at the time.  That was in the winter of 2003, and Harriet was already several years old then.  Harriet is, therefore at least 13 years old and shows no signs of slowing down.

Harriet’s old ‘skin’.

Harriet has seen a lot of changes, and been a passive observer of quite a few graduate student research projects.  I am also growing older – I just turned 40 this past weekend.  I am pleased to report that I don’t seem to be showing signs of slowing down either.

(by the way, the undergraduate student I referred to left McGill for a MSc in British Columbia followed by a PhD in Australia.  She, like Harriet, is doing very, very well!)

Arthropods in the tree-tops: Canopy ecology in Quebec (Part 3)

This is the final post in a three part series about studying canopy arthropods in Quebec.  Part 1 was about canopy access and Part 2 was about patterns of diversity.  This post is about ecological interactions in the canopy. 

I had the pleasure of supervising a M.Sc. student, Kathleen Aikens, who was keen to work on a canopy project that looked deeper into some of the ecological interactions occurring in our deciduous forest canopies.  This was possible since we had, by this time, acquired a lot of base-line data on arthropods in many strata of the forest.  Kathleen’s work included using exclosure cages to see whether or not bird predation might affect arthropods in the Canopy differently than in the understorey.   This was exciting work, as it took our laboratory in a new direction, and lets us start to unravel some of the complexities of the food-webs in the tree-tops.  Her main result was that birds did have a strong top-down effect on arthropods, and that effect did differ as a function of height.  Using some bait trials, we also found that predation by arthropods on arthropods was also stratified.   This research suggests that arthropods living in trees in our region of the world are always under significant predation pressure, from both vertebrate and invertebrate predators.

A cage experiment, to assess the effect of predators on insects living in the forest canopy.

More recently, my laboratory has started to collaborate closely with another group at McGill studying “ecosystem services” – this is work done with Elena Bennett, another colleague at McGill University.  The research framework with this project is about how different ecosystem services are affected by the fragmented landscape that occurs in a large region just south of Montreal.  Elena and I co-supervise a PhD student Dorothy Maguire, who is looking at the ecosystem function of insect herbivory, and studying how herbivory varies as a function of forest size and degree of isolation (i.e., from a large contiguous forest), and she is studying herbivory in the understorey as well as the canopy.  Herbivory is closely linked to ecosystem services because of its effect on nutrient cycling, forest aesthetics, and more.  Although this project is currently underway, Dorothy is uncovering some interesting results, already.  For example, she is finding that levels of insect herbivory differ between the understorey and the canopy, and that forest fragmentation is affecting insect herbivory.

Summary

I have provided some highlights of some of the work that our laboratory has done in Quebec’s deciduous forests (and my apologies to the students who I didn’t mention!).  Although we have come a long way, and uncovered some interesting research results, I still feel that the work is just beginning.  For example, the bulk of our work has been on only two tree species (Sugar Maple and American Beech), and we have only studied a fraction of the arthropods that exist in the canopies of our forests.  I would like to expand the research to include other plant-feeding guilds, bees and wasps.  I’m also always curious about the piles of dead and decaying leaves that we find nestled between the crotches of high branches – these micro-habitats surely contain suspended soil (e.g., see Lindo & Winchester 2007), and within those “islands” there should be a host of arthropods.   Not surprisingly, the forest canopies in southern Quebec are home to a marvelous diversity of arthropods.  It’s a scientist’s model system, and a delightful system in which to work and play.

Me (Chris Buddle) above the canopy at Mont St Hilaire!

Arthropods in the tree-tops: Canopy ecology in Quebec (Part 2)

Part 1 of this series highlighted how our laboratory accesses the forest canopy.  This post is about our projects related to understanding patterns of Arthropod diversity in Quebec’s forest canopies.

I will first highlight some work done by my former PhD student Dr. Maxim Larrivée.   Max started in my lab at the exact time that I received the grant for the mobile lift platform, and he become an expert at this machine, and he proved to be an immensely talented student.  His project was focused on understanding the spatial patterns of spider diversity in three deciduous forest sites located within an hour drive of the Island of Montreal.  In the first part of his dissertation, Max collected almost 14,000 spiders representing 82 species (Larrivée  & Buddle 2009).  The spider fauna of the canopy was markedly different from the fauna from the understorey, and it is likely that different mechanisms structure the assemblages in the two habitats.

Overall fewer spiders and fewer spider species were found in the canopy compared to the understorey, but at a species-specific level, there were some spiders that seemed to have a preference for living in tree-tops.  For example, the lovely jumping spider (Salticidae) Hentzia mitrata was significantly more common in the canopy.   We were also most excited to document the species Mastophora hutchinsoni (Araneidae) in the canopy – this is the famous “bolas spider” and we believe our canopy record may be the most northern record for the species.  The Bolas spider hunts by swinging a strand of silk at its prey, and this strand has a “bolas” of sticky capture thread at the end.  This species is truly fascinating, and in our system, it is a species that likes the canopy.

Max demonstrating the methods of using a beat-sheet to collect spiders in the forest canopy. Here, he is about 25 m above the forest floor.

The follow-up work to this baseline study was focused on understanding dispersal potential of spiders in the canopy as compared to the dispersal potential of understorey species.  Most spiders in our system are small, so we predicated that their main mode of dispersal was via ballooning (i.e., releasing a small strand of silk and letting the wind carry the spider away).  We had also hypothesized that dispersal might be one of the mechanisms behind the aforementioned patterns community structure in the canopy compared to the understorey.  Max collected live spiders in the canopy and understorey and set them up in a wind-tunnel in the laboratory.  He then documented each species’ propensity to disperse by looking at the frequency by which they showed ‘tip-toe’ behaviour (a pre-ballooning condition).  In the paper resulting from this research, we reported that the spiders in our system do have high dispersal potential, but that this potential did not differ depending on whether the spider was collected in the canopy as compared to the understorey (Larrivee & Buddle 2011).   This was a fascinating area of study, and we are left with as many questions as we started with!   For example, if dispersal potential doesn’t differ between canopy and understorey species, what mechanism drives the differences in community structure between the two habitats?

Our laboratory has been studying beetles as well as spiders – although I am personally very interested in spiders, I do recognize the beauty of beetles, and their important ecological roles in virtually all ecosystems.  One of Max’s field assistants (Brianna Schroeder) was keen to complete a small project about beetles so she set Lindgren funnels in the canopy and in the understorey.  Over 170 species were collected, and once again, the fauna from the canopy was differentiated from that of the understorey (Schroeder et al. 2009).

Max up in the canopy crane!

Two other field assistants that worked with Max (Kristen Brochu and Katleen Robert) also worked on their own projects, and together with my colleague at McGill University (Prof. Terry Wheeler), we are close to finishing up a manuscript to describe more patterns of arthropod diversity as a function of vertical stratification in Quebec’s deciduous forests – this work includes beetles as well as flies (Diptera).  Although the responses are not the same for the different groups of insects, we are finding that both beetles and flies show vertical stratification in our study sites.

Stay tuned for Part 3, which will focus on ecological interactions occurring in the Canopy.

Seven-legged spiders walking on water

Many spiders are known to ‘walk on water‘ (including dock spiders): spiders are small enough that many species and life stages can be held by the meniscus of water.  Spiders also have eight legs but they often lose one or more of their legs (in the scientific jargon, this is ‘leg autotomy‘).   In general, this is often part of defensive behaviour, and is common in many animals.  Sacrificing an appendage is a better idea than being eaten by a predator.

So… let’s link these thoughts together- spiders run on land as well as water, and they are often missing a leg.

A wolf spider (Pardoa mackenziana). In this photo, a leg that was previously lost has been ‘re-grown’ (4th leg on right side). The cost of this spider’s lost leg must have been minimal, since it survived and moulted again!

So, next comes the research question:   what is the ‘cost’ of leg autotomy and does this cost vary depending on whether the spider is traveling on the land or on water.  This is an interesting question, and one that was addressed directly by Christopher Brown and Daniel Formanowicz Jr in a recent research paper in the Journal of Arachnology.   These authors used the wolf spider Pardosa valens as their model species, and conducted ‘speed trials’ for male and female spiders on a terrestrial track as well as an aquatic track (i.e., these were constructed in a laboratory setting).  After doing the trials with intact spiders, the authors ‘induced autotomy’ (yes, this sounds somewhat horrific, but autotomy is very common with wolf spiders, and although they lose a little of their hemolymph, they heal quickly) and ran the trials again, with the same spiders (sans legs).

Results?  Well, perhaps not surprisingly, in the first year of their study, the species ran more slowly when they were missing a leg, but in the second year of the study, this affect varied by sex (males were slower, and autotomy only affected the females).   They report some rather complicated results when comparing terrestrial to aquatic trials, but in general, the spiders tended to run more slowly on the aquatic tracks when they were missing legs.  Again, this is perhaps not a surprising result, since having seven instead of eight legs will certainly change the biomechanics when considering how the spiders interacts with the meniscus of water.

Clearly, there are some costs associated with missing legs, but it is important to note that even without legs, these wolf spiders were able to run effectively on land and water, and even if their speed was slower than when they had all eight legs, they can still move an impressive speeds.  The range of speeds in some of the trials was between  20 cm/s and 50 cm/s – this translates to  running speeds between 0.72 and 1.8 km per hour!

Leg autotomy in wolf spiders in natural habitats range from between 8% and 32% as reported by Brueseke et al. in 2001 and by Apontes & Brown in 2005.  In the present study, the authors state that natural populations of P. valens exhibit between 25% and 45% autotomy.    These numbers are in line what what I have observed, as well.  This is pretty amazing – wolf spiders exhibit leg autotomy at a very high frequency, and in some cases, half the spiders in a population are missing a leg.  What can we infer from this?   Although there are some costs associated with leg autotomy (as reported by Brown and Formanowicz), they must not be that high – otherwise, natural selection certainly wouldn’t have favoured autotomy as a means to escape predation.  Brueseke et al., research supports this as they found very few costs associated with autotomy in Pardosa milvina.  In their work, Brueseke et al. studied locomotory behaviour as well as prey capture, and found overall support for the ‘spare leg hypothesis’ (i.e., look at all of my legs!  I can manage without one!).

So, here are the take-home messages:

Wolf spiders can run quite quickly, some species can run across water and land, and they can do so with missing legs.  Although they may be a little slower without their full complement of legs, the costs must be relatively minor given the frequency of leg autotomy in wolf spiders. 

This gives you more reasons to watch spiders – count some legs and see how many individuals are without their full complement of legs.

References:

Apontes, P., & Brown, C.A. (2005). Between-set variation in running speed and a potential cost of leg autotomy in the wolf spider Pirata sedentarius. American Midland Naturalist, 154, 115-125 DOI: 10.1674/0003-0031(2005)154[0115:BVIRSA]2.0.CO;2

Brown, C.M., & Formanowicz Jr, D.R. (2012). The effect of leg autotomy on terrestrial and aquatic locomation in the wolf spider Pardosa valens (Araneae: Lycosidae). Journal of Arachnology, 40, 234-239 DOI: 10.1636/Hill-59.1

Brueseke, M.A., Rypstra, A.L., Walker, S.E., & Persons M.H. (2001). Leg autotomy in the wolf spider Pardosa milvina: a common phenomenon with few apparent costs. America Midland Naturalist, 146, 153-160 DOI: 10.1674/0003-0031(2001)146[0153:LAITWS]2.0.CO;2

ResearchBlogging.org

Notes from the field: Yukon wildlife (Part 3)

Here is Part 3 from the “notes from the field” series  - an account of a recent field research trip to the Yukon.  Click here for Part 1 and here for Part 2. 

17 July, 10 AM, Dawson City, Yukon

I am back in the world of electricity, Internet, hotels, and tourists.  The layers of mosquito repellent have finally been washed off after a much-needed shower in the Hotel last night.

Arctic Pardosa wolf spiders… captured.

The big news is that the day after I last wrote, we managed to find and collect Pardosa glacialis! We woke early on July 15 and went up to the high elevation tundra habitats located exactly on the border of the Yukon and NWT (we are not even sure what Territory to write on our collection labels! – the site was, literally, on the border!).  All five of us helped Katie look for wolf spiders, and after a couple of hours of searching and collected, we found dozens of specimens – this was thrilling, as these specimens are very important for Katie’s research and we were getting anxious about not finding any. We also got a little bit lucky – within an hour of that sampling, some rather nasty weather blew in and we were forced back to camp for the afternoon.  In the rain, tundra wolf spiders tend to hunker down deep into the moss and lichens, not to be seen.

I have mixed feelings about being able to catch up on e-mails, and I certainly miss my family.  However, I am also missing the fields of cottongrass on the Arctic tundra, eating cloudberries in high mountain passes, and seeking new localities for the Arctic pseudoscorpionThe Dempster Highway is a biologist’s dream – full of wildlife, stunning vistas, amazing habitats, a unique biogeographical history, and a region that hosts a rather stunning and diverse arthropod fauna.

I will be back up here again.

The Yukon landscape.

Notes from the field: Yukon wildlife (Part 2)

Here is Part 2 from the “notes from the field” series  - an account of a recent field research trip to the Yukon.  Click here for Part 1. 

14 July, 11 PM, Rock River Campground, km 445 (Dempster Highway), Yukon

“Bag of spiders” – a nice haul of wolf spiders!

We have had a busy few days – we finally got some drier weather in Tombstone and Laura and Barb were able to do some collecting, and Crystal set some more traps.  We left Tombstone a couple of days ago to drive north, collecting en route.  We have seen some of the larger wildlife, including arctic fox, moose, and grizzly bears.   However, our sights were really set on the smaller wildlife: Barb was particularly impressed with the diversity of parasitic wasps at a place called “Windy Pass” – this area is known for hosting a lot of rare, Beringian species, and entomologists have collected at this locality for decades. We crossed the Arctic Circle yesterday, and the Rock River campground is nestled in a river valley just north of the Arctic Circle.  We are now officially in the Richardson Mountain range – the tundra habitats about 10 km north of this campground is one of the most beautiful places on the planet.  I feel very lucky and privileged to be here.

Although we had some more rain and cold weather yesterday, today was a perfect summer day at this latitude (i.e., it got just above 20C) – it was also a very windy day, which was bliss since higher winds mean that the incessant hordes of mosquitoes are kept at bay.  Fieldwork in the sub-arctic is quite challenging, in part because of the mosquitoes.

Self-portrait geared up for the biting flies.

We collected well into the NWT, getting all the way to the Peel River (located about 540 km up the Dempster).  Crystal found the most northern locality for Wyochernes asiaticus in the NWT and for that reason I will buy her a beer whenever we get back to civilization!   Unfortunately we have yet to find Katie’s wolf spider species – we have checked a few locations but have come up empty – there are certainly many other species of wolf spiders on the Tundra, but the ones we have collected have not been Pardosa glacialis.  Our team is a little anxious about this, as we only have a few more days at the Richardson Mountains before heading south.

We are now back in camp and it should be time to crawl into the tents.  At this latitude it is pretty difficult to think about going to sleep – it is light 24 hours a day, so it is hard to trick the body into thinking it is time for sleep.   It’s even harder to get to sleep knowing that Pardosa glacialis is out there…somewhere.

Stay tuned for Part 3, coming Friday…

 

Notes from the field: Yukon wildlife (Part 1)

This is the first of a three-part series that was originally published (as one article) in the McGill Reporter, as part of their “notes from the field” section – it is an account of my research trip to the  Yukon, back in July.  It is reproduced here, with permission.  For a different (yet complementary!) account of this field trip, see The Bug Geek’s blog posts, Part 1 and Part 2.

MSc student Katie Sim searching for wolf spiders in the Yukon, among fields of cottongrass

8 July 2012, 10 PM, The Westmark Hotel, Whitehorse Yukon

Our entomology research team has just arrived in Whitehorse in anticipation of our upcoming fieldwork in the Yukon.  I just returned to my room after enjoying a beer at the hotel bar where we completed our GIANT shopping list this evening. Tomorrow morning we are picking up our RV, and will be driving about 500 km NW of Whitehorse (on paved roads) before turning onto the Dempster Highway – this famous Yukon road is a dusty, gravel road that heads straight up towards the Northwest Territory, crossing the Arctic Circle, and taking you from boreal spruce forests in the south to sub-arctic tundra in the North.  The Dempster crosses the Yukon-Northwest Territory border at about kilometer 465, and then continues on to Inuvik.   It’s a big trip with few opportunities for groceries along the way.  We are all part of the Northern Biodiversity Program - a multi-University collaborative project about the diversity of insects and spiders in Canada’s North.   After months of planning, applying for research permits, and fine-tuning our methods, it is great to finally be here.  That being said, I worry that the excitement and anticipation will keep us too jittery to get a good night’s sleep tonight – too bad since after tonight, we’ll be sleeping in tents rather than hotel rooms!

10 July 2012, 3 PM, Tombstone Campground, km 72 (Dempster Highway), Yukon

We have made it up to the Tombstone mountain range, about 75 km up the Dempster Highway.  Unfortunately, the weather has not been cooperative, so we are stuck in the campground, huddling in a cook-shack with other travelers.  Most of the other campers are on vacation, so we are unusual since our trip is for research.  We are also unusual because unlike most visitors to this part of the world, we are NOT viewing large wildlife (bears, moose) but are instead spending our time searching for the tiny wildlife along the Dempster highway.

PhD student Crystal Ernst installing insect traps on the Yukon Tundra

Our team includes two graduate students from my laboratory, Crystal Ernst and Katie Sim.  Crystal has been setting out “pan traps” (yellow bowls) to collect ground-dwelling arthropods (i.e., insects, spiders).  Part of her PhD is about unraveling some of the complexities of arthropod-based food webs in the Arctic, and she is using these traps to collect critters that live on the tundra.  Thankfully, her work does not require good weather!  Katie is working on the population genetics of a high arctic wolf spider, Pardosa glacialis – and she needs some more specimens.  We know that the species occurs near the Yukon-NWT border (in the Richardson mountains), about 300 km north of us.  A post-doc, Dr. Laura Timms, is part of our team also – she studies plant-insect interactions in the North, and is focusing her research on insects that feed on Willow and Balsam Poplar trees.  Our final team member is Dr. Barb Sharanowski, an entomology professor from the University of Manitoba – she is collecting parasitic wasps, with a goal of better understanding their evolution and diversity in northern environments.  Unfortunately, Barb and Laura’s work is dependent on dry and warm weather, so they are hoping for good conditions!

I am here to find a small (< 4 mm) and curious Arachnid known as the “Arctic pseudoscorpion“.  Pseudoscorpions are relatives of other Arachnids, and resemble scorpions, but without a tail.  They are predators (of other invertebrates) that live in soil, leaf-litter, under bark, and under rocks.  The species Wyochernes asiaticus lives under rocks beside creeks and rivers in the Yukon.  It is a Beringian species, meaning it exists in North America in regions that were unglaciated during the last ice age, including many regions in the Yukon. The Dempster Highway travels directly through a lot of these regions.   I have previously collected this species in the Yukon, and on this trip, I am hoping to gather more specimens to further understand its full distribution, and to collect data about its biology and life-history.

This morning, despite the rain, our team traveled to a half-dozen streams further south from this campground, and we had great success in pseudoscorpion hunting!  Numerous specimens were found under rocks beside creeks, including females with their eggs held under their abdomen.

We are now drying out and I am about to finish preparing a seminar that our team will deliver tomorrow at the campsite.  The Tombstone Park staff are keen to have researchers discuss their work with the general public – it’s a nice opportunity to share our research stories with other people traveling the Dempster.  I am always thrilled that all types of audiences show keen interest and enthusiasm about insects and spiders.

Stay tuned…later this week will be Parts 2 and 3

Do spiders like to dance? Do spiders like music?

A couple of comments on one of my previous posts  piqued my curiosity about Arachnids and sound – one comment talked about how Harvestmen seemed to enjoy the reader’s singing, and another comment suggested a yellow sac spider moved and grooved (danced?) when a record player was playing tunes.

Huh?

So… it is well known that spiders respond to direct vibrations (i.e., through their webs), but what about sound waves that could be produced by singing or other forms of music?  Do spiders like music? Do they like to dance?

A spider that likes music? Araneus cavaticus (photograph (c) by Tom Murray, published here with permission)

Being a good scientist, I looked to the literature.  Behold, I found a paper published in 1966 in the journal Ecology, titled “Reactions of Orb-Weaving Spiders (Argiopidae) to Airborne Sounds” by Frings and Frings. In this paper, the authors used two common orb-web spiders, and asked whether spiders responded to airborne vibrations as well as to vibrations through their webs.  Unlike previous papers at the time, these authors separated the two possible modes of vibration (i.e., direct vibrations versus airborne sounds).   The Introduction of this paper is wonderful, and provides a series of anecdotes about spiders and sound, including a 1928 citation about how the sensory hairs of spiders moved to the sounds of a mandolin played 5 m away.  As a mandolin player, I was very excited to read this – and I will keep an eye out for spiders when playing!

Frings and Frings collected spiders (including the common orb-web species Araneus cavaticus, of “Charlotte’s Web” fame – it is Charlotte A. Cavatica don’t you know!), used a fancy laboratory set-up to make sounds (and vibrations), and measured responses by their study species.  For one species, the responses were the following ‘1) spasmodic extension of the front legs; (2) jerking of all the legs; (3) shaking the web vigorously by flexing and extending the legs’.

Results:  indeed, their study species respond to airborne sounds, and their responses occur between 200 and 3000 cycles per second (Hertz) and between 90 and 110 decibels.

Let’s put that in perspective -

For Hertz (i.e. cycles per second, or pitch):

Strings on a mandolin range from about 196 Hz to 660 Hz; A barking dog has a range between about 400 Hz and 1000 Hz; The range of a typical human voice is between 80 Hz and 1100 Hz.

For Decibels (i.e., “loudness”)

A violin is between 82 and 92 dB; Singing can be up to 100 dB; A really loud rock concert can be up to 150 dB

 So, if you sing loudly to a spider, play the mandolin for it, or take it to a rock concert, the sound waves produced can elicit responses in spiders.

(A  barking dog will also work.  Or, a dog playing a mandolin)

Might spiders like my mandolin playing more than my family?

Caveats:  the results I mention are for two species only, and it would be  interesting to see whether other species responds in a similar fashion.  Also, I am personally very curious about how spiders respond to different styles of music – classical, bluegrass, punk rock?  THIS is a great research question!

Reference:  Fings, H, & Fings, M (1966). Reactions of Orb-Weaving Spiders (Argiopidae) to Airborne Sounds Ecology, 47 (4), 578-588 DOI: 10.2307/1933935

 Thanks to Tom Murray for permission to use his photograph – more of his work can be viewed here

Canada’s largest spider …sittin’ on the dock of the bay

I just returned from a week of vacation on beautiful Stony Lake, north of Peterborough, Ontario.  A lot of time was spent sitting on docks (Note: the correct terminology should be Wharf instead of dock i.e. you ‘dock’ at a wharf; however, it is generally more commonplace to use the terminology Dock), at water’s edge.  Where there are docks wharfs, there are spiders.   The most common species on the docks tends to be the (in)famous “dock spiders”.  I am pretty sure that dock spiders are the largest spiders in Canada (if not, please correct me!).  I receive many phone calls and e-mails about dock spiders, and I suspect an impressive amount of arachnophobia can be blamed on this hairy wonder of the Arachnid world.

Dock spider (Family Pisauridae), Dolomedes sp.

Dock spiders belong to the family Pisauridae, which are closely related to wolf spiders (family Lycosidae).  Both of these families of spiders show interesting behaviours towards their young (‘spiderlings’).  Females lay eggs within a silken egg sac, and this sac is carried around by the female until it is time for the young to hatch.  Wolf spiders attach their egg sacs to the end of their abdomen, and when the spiderlings hatch they are carried around on the mother’s abdomen before embarking on a solitary life.  Pisaurid females, however, hold the egg sacs by their fangs, and it is carried underneath the female’s body – it looks like the females are carrying around a big wad of cotton by their mouths.  Pisaurids are commonly known as nursery-web spiders, as females build a silken, tent-like ‘nursery’ for their spiderlings.  Upon hatching, the young spiders live in a protected place, typically spun in and among grasses, low-growing vegetation, or between rocks around the margins of water.

A dock spider (Family Pisauridae), Dolomedes sp., in its favourite habitat

Two species, Dolomedes tenebrosus and Dolomedes scriptus are the common ‘dock spiders’.  Unfortunately it is difficult to tell these two species apart, without a microscope, forceps, and expertise. Both species are brownish-grey in colour, with black and light brown markings (‘chevrons’) on their abdomen. These spiders, especially the full-grown females, are the largest (native) spider species in Canada, and their body (including legs) can almost fill your palm – the body length (i.e., not including legs) of mature females can easily exceed 2 cm.  But do not worry!  These spiders do not bite people, and would rather eat land-dwelling and aquatic insects, and they are known to catch small minnows, which is the reason for their other common name, the fishing spider.  The spider will wait with its front legs resting in the water, and when small tadpoles or fish come near, the vibrations alert the spider to its lunch. An invertebrate eating a vertebrate is not a common occurrence in the animal kingdom!  

Dock spider habitat

Dock spiders, as their name suggests, tend to be associated with the margins of lakes, ponds, swamps and rivers, where they typically sit motionless on tree trunks, rocks, boats, and docks.  However, individuals are known to travel some distance from water, and are the reason for many alarmed people describing hairy monsters in their basements.  This mainly occurs in the autumn months when the spiders are searching for a warm place to spend the winter (under stones, leaves, or bark, or inside buildings).  After spending a winter as an immature spider, dock spiders typically mature and mate in the spring, with females carrying egg sacs for a few weeks, before the young hatch in the nursery.  Females can then go on to produce a second, or sometimes a third egg sac before the end of cottage season.  One egg sac can produce over 1,000 spiderlings.

Without a doubt, dock spiders are impressive animals and although not small and obscure, they are still worthy of study. They should be considered friends of cottagers, boaters and home-owners.  I encourage you to watch them, observe their behaviours, and marvel at their size – it’s especially fun to do this when sitting down at the dock, having a glass of your favourite beverage, watching when the evening comes….