Ephemeral art

It’s a difficult time of year for many people: Instructors are looking at how many lectures are left before final exams, and starting to panic about how much material hasn’t yet been covered! We are planning field seasons, applying for research permits, juggling meetings, and starting to think about how the summer’s work-life balance will play out. As we approach the end of term, stress levels in the classroom are also building. Students are working madly on term papers, scrambling to get things organized for summer jobs or internships, and looking ahead to final exams.

It’s busy. Everyone is too busy. The days are too full and it’s not easy.

Then this happens:

A gift on the chalkboard

A gift on the chalkboard

I teach with chalk, and in my lecture hall there’s a vertical sliding chalkboard. When I enter the room, the front, upper board is where I start the lecture and as that board fills up, I slide it up. Last week I was surprised by a beautiful woodpecker that someone had drawn. I was “art-bombed”: this drawing was ‘revealed’ about a third of the way into the lecture. It happened on #taxonomyday, which was fitting.

The woodpecker disappeared sometime after my lecture last week. Then this piece of ephemeral art appeared on Monday:

Another gift: this bird is an island.

Another gift: this bird is an island.

This is no longer a one-hit wonder! An unnamed student is taking time before lecture to leave some art for all of us. I don’t know who the student is, but this art brings joy to all of us, and provides a smile at a difficult time of year. It also allows me to modify the lecture and link the art to whatever I might be teaching. For example, lecturing about island biogeography on Monday, with a drawing of a sparrow on the chalkboard, allowed us to consider the bird as an island, and its fauna (feather mites, lice) colonize that island, and perhaps follow the predictions of MacArthur and Wilson’s equilibrium theory of island biogeography.

Dear unnamed student: know that you are doing something very special. You are taking time and energy out of your busy life to simply bring joy to others. Thank you for the ephemeral art.

Mushroom

Mushroom in chalk.

 

Meet Shaun Turney and Fuzzy Cognitive Mapping

This is another in the series of “Meet the arthropod ecology lab“: Meet PhD student Shaun Turney, and a neat project he’s been working on…

I joined the lab in September and I’ve been really enjoying my first months as a PhD student. I haven’t done any field work yet so that means no specimens to ID or field data to crunch. Instead I’ve been occupying my time very happily playing on the computer. I recently released an R package on CRAN for Fuzzy Cognitive Mapping called “FCMapper”, in collaboration with Michael Bachhofer. It is based on FCMapper for Excel, distributed at http://www.fcmappers.net/joomla/, developed by Michael Bachhofer and Martin Wildenberg. Fuzzy Cognitive Mapping is really cool and you should try it out!

Shaun, in the lab, thinking about food-webs.

Shaun, in the lab, thinking about food-webs.

Recently I’ve become interested in graph theory and all that it has to offer to ecology. Anything that can be represented as boxes and arrows (or lines) can be represented as a graph (in the graph theory sense) and can be analyzed using graph theory tools. I LOVE box and arrow diagrams. Like, maybe an inappropriate amount. Any paper that I’ve printed out and read has at least two or three box and arrow diagrams scribbled into the margins. My notebook is filled with box and arrow diagrams from lectures that I’ve attended or random thoughts that have passed through my mind while I’m sitting on the train. Some people think in words, some in pictures, but I think in boxes and arrows. So you can imagine my enthusiasm as I’ve discovered over the past year that there exists a whole body of mathematics that can represent and analyze box and arrow diagrams.

My latest favourite graph theory tool is called Fuzzy Cognitive Mapping. It can be understood by breaking down the term into its component words. A “cognitive map” in this case is when you represent a system as interconnected concepts. Boxes and arrows, in other words. The “fuzzy” part refers to fuzzy logic. Fuzzy logic is logic that deals with approximate rather than exact values. So to make a fuzzy cognitive map, you make a box and arrow diagram and assign approximate values to the arrows (positive vs negative, weak vs strong relationship). The concepts are then allowed to affect each other until they come to an equilibrium. The exciting part is that then you can try out scenarios! For instance, you could fix one (or more!) concept to be a high or low value and see how it affects the rest of the system. In the context of ecology, one use is to explore potential ecosystem management scenarios (ex, http://en.vedur.is/media/loftslag/Kok_JGEC658_2009.pdf).

If Fuzzy Cognitive Mapping sounds interesting to you (and it should!), you can download the package from CRAN. Michael Bachhofer and I plan to create a tutorial in the spring, but until then you are welcome to email me if you can’t figure out how to use the package.

Download here: http://cran.r-project.org/web/packages/FCMapper/

A graphics output for a toy example I was playing with the other day. It is a cognitive map of things which might affect spotted owl abundance. FCMapper uses igraph for visualization. The thickness of the arrows represents the strength of the relationship and the color represents the direction (red=negative, black=positive), as assigned by me. The size of the circles represents the "size" of each concept at equilibrium, as determined using the nochanges.scenario function in FCMapper. Think of the fun maps you could make for your favourite study system!

A graphics output for a toy example I was playing with the other day. It is a cognitive map of things which might affect spotted owl abundance. FCMapper uses igraph for visualization. The thickness of the arrows represents the strength of the relationship and the color represents the direction (red=negative, black=positive), as assigned by me. The size of the circles represents the “size” of each concept at equilibrium, as determined using the nochanges.scenario function in FCMapper. Think of the fun maps you could make for your favourite study system!

Meet the lab: Elyssa Cameron

Here’s another in the “Meet the lab” series – written by Master’s student Elyssa Cameron.

Like many in my field, my love of nature and the creatures which inhabit it began much earlier than I can remember. From camping trips to day camps to museums and everything in between, I have always been passionate about understanding the world around me. Whether I was catching butterflies, trying to identify an elusive bird, exploring a new place or simply basking the in the beauty and wonder of an unaltered landscape, I knew that I wanted to be an advocate for nature.

Elyssa

Elyssa Cameron, with a furry friend.

In 2011, this led me to pursue an undergraduate degree at McGill University in Environmental Biology, specializing in wildlife. Here I learned the skills and thought processes that would help guide me on my journey. This is also where I feel in love with ecology and ecosystem dynamics. I was humbled by the enormous web of complexity which governs our world and sought to discover where exactly my interests lay. My search took me to South Africa, where I spent 3 week learning about wildlife management, game ranching, governance of national parks, and the challenges in maintaining healthy, safe, sustainable populations and ecosystems. It was during this trip that I realised that the management and conservation of any ecosystem needed to rest upon a solid understanding of the ecology of the system as well as the interactions of individual species, between different species and between species and their environment. Without this basic knowledge of how something works, one cannot hope to protect it.

giraffe

With this newfound drive for management and conservation through a better understanding of ecosystem ecology, I signed on to do a Master’s project with Chris Buddle (McGill University) on arctic arthropods in 2014. Having never truly worked on insects and spiders before, I knew such an undertaking would be a challenge; but one that I was excited to take on! The aim of this project is to establish a more comprehensive long-term ecological monitoring program in Cambridge Bay, Nunavut, by linking patterns of vegetation and habitat diversity to arthropod diversity. In this way, we can examine the arctic ecosystem in a more complete way and not as a series of individual pieces. This will allow for more effective management in this rapidly changing ecosystem and will hopefully provide more predictive power for models and policies.

However, to obtain these baseline conditions, we must first collect the data. This took me on my second great adventure – a summer in Canada’s high arctic! For those of you who have not yet experienced the vast and diverse beauty of Canada, it is something I cannot recommend enough. But be forewarned, there are LOTS of bugs – which was great for the Bug Team! Working in association with CHARS (Canadian High Arctic Research Station) the Bug Team was part of a unit of researchers set on better understanding the arctic ecosystem and promoting interdisciplinary collaboration. We sampled spiders, flies, beetles, wasps and others to try and get the most complete view of the species diversity and community structure as we could in such a short summer.

Arctic

Elyssa’s Arctic Adventures!

While there, we also did a number of community outreach programs to try and get the locals interested in science. We participated in a science night, made insect and butterfly collections to leave at the high school and Sarah Loboda (one of my wonderful lab mates!) organized day camp activities for the kids.

Now back at McGill, I spend most of my days in the lab looking through a microscope. With the general sorting of samples now complete, I am about to embark on my biggest challenge yet: species identifications! Both scary and exciting; but with the great support system here, I’m not worried.

As of January, I will also be co-supervising an intern from the Vanier Wildlife Technicians program with Chris Cloutier (the lab’s resident mosquito expert).

Meet the lab: Sarah Loboda

This is the second in a series of posts that will introduce the members of the arthropod ecology lab. This one is about Sarah Loboda:

I am not one of those people who can reflect back on my childhood with memories of chasing butterflies with a net. Instead, I could be found shouting loudly when seeing a spider in the bathtub. Things change… today I study community ecology of Arctic arthropods, and have a deep passion for arthropod of all kinds, from spiders to butterflies and flies.

Sarah, with a butterfly net.

Sarah, with a butterfly net.

My interest in entomology began as a challenge, and I love challenges! When I was an undergrad at Université du Québec à Rimouski, Québec, a tackled the big challenge of learning to identify insects. During my undergrad, I participated in several research projects where I could encounter biodiversity of insects and spiders and I developed a curiosity and a fascination about arthropods, particularly those living in extreme Arctic environments. Arthropods are ectotherms, yet they survive, year-round, in a region where the climate is very harsh. I quickly realized that the taxonomy was not the only interesting aspect in entomology. I wanted to identify arthropods in order to do research on community ecology. During the final year of undergrad in Rimouski, I decided to do a research project on the community ecology of spiders in salt marshes. As part of this project, I met Chris Buddle who encouraged my passion for entomology and the Arctic and I was lucky to do a Master’s project on spiders in the Canadian North as part of the Northern Biodiversity Program.

I take all opportunities to do outreach, and talk about insects and spiders with anyone who is interested. I am also involved in different societies, including the Entomological Society of Canada, and the Entomological Society of Québec, for which I’m the student representative. I love to volunteer and organize activities for members. Being the mother of two children, I also like to share my passion about arthropods with my kids, their friends and classmates in schools or daycares.

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

I have just started the second year of my Ph.D. I work with the veritable goldmine of data that has been collected from Zackenberg (northeast Greenland), where a long term monitoring program of arctic biodiversity has existed since 1996. My primary research objective is to assess temporal changes of the Arctic fly communities in this region, using the Muscidae and Phoridae families as model study taxa. The second objective of my research project will be to assess phenotypic and genetic changes over the last two decades in two species of Arctic muscids from Zackenberg. For this project, I am co-supervised by Jade Savage, a muscids expert from Bishop’s University, and Toke Høye from Aarhus University.

Meet the lab: Crystal Ernst

This is the first in a series of posts where each Arthropod Ecology lab member can introduce themselves. First up is PhD student Crystal Ernst:

I’m a Ph.D. candidate in the final stages of my program: these days I’m crunching out analyses and writing papers as I prepare to submit my thesis at the end of the term. As a community ecologist, I spend a lot of time thinking about how and why different species assemble together in space and time. These questions are foundational to the study of ecology and provide the overall framework for my research program, which uses beetles and other ground-dwelling arthropods to study the structure and determinants of terrestrial animal assemblages.

PhD student Crystal Ernst installing pan traps along the Dempster Highway (Yukon)

PhD student Crystal Ernst installing pan traps along the Dempster Highway (Yukon)

I have spent my summers conducting field research in gorgeous, remote regions of our northern territories, including Kugluktuk Nunavut and the Dempster Highway in the Yukon. My colleagues, members of the Northern Biodiversity Program, have contributed to the collection efforts as well, resulting in specimens being obtained from twelve different locations in the boreal forest, the subarctic and high arctic, spanning Canada coast to coast. I’m now neck-deep in the joy of interpreting the stories contained in my collection of specimens.

Specimens in pan trap (photo by C Ernst)

Specimens in pan trap (photo by C Ernst)

 

Sorting specimens back in the lab

Sorting specimens back in the lab

I’ve taken two approaches with this work. First, I’ve used a fairly traditional taxonomic approach to studying these animals: by identifying them morphologically (with a microscope and identification keys), I can associate each individual with a known insect species – although some new species have also been discovered! With this information I can describe the species richness (diversity) and distributions of different beetles in the north, and see which species are associated with each other at different northern locations. Secondly, I’ve looked at my arthropods from the perspective of their ecological functions – their roles in their environments. For example, some insects are responsible for pollenating plants, others are important decomposers, and others still are predators; arthropod assemblages can therefore be described in terms of the diversity and dominance of different functional groups. I am in the process of comparing taxonomic and functional assemblages found across northern Canada, and working to determine what aspects of their ecosystems (things like: temperature, wind, and sunlight; the diversity and structure of the plant community in which they live; soil characteristics) are associated with the way these assemblages are structured, and how they change over time and across space.

Three color morphs of Blethisa catenaria, a rare subarctic species (H. Goulet)

Three color morphs of Blethisa catenaria, a rare subarctic species (H. Goulet)

A fun complementary topic I’ve researched is the relationships between some high arctic ground beetles and a fascinating group of parasites called hairworms. I found a number of beetles from different locations to be infested with these worms; in one instance almost a quarter of the beetles were infected! The parasites are aquatic as adults and must first infect an aquatic insect (like a mosquito larva) before being transmitted to a terrestrial host (like a beetle) via the predation of the aquatic host by the terrestrial insect. To complete their life cycles, the worms somehow compel the beetles to enter the water, effectively forcing them to drown themselves so that the worms can emerge safely into their aquatic habitat. This discovery suggests an important link between the creatures living in terrestrial habitats and those in aquatic habitats and tells us about the arctic food chain: beetles must be eating mosquitos or other insects that have aquatic larval/immature stages. These prey items may, in fact, be a very important source of food. More work needs to be done to confirm this! In the meantime, I am excited to have found these associations – the fact that these particular species of beetles can be hosts for hairworm parasites is new information, and it appears that the parasite itself is a new species!

Pterostichus caribou with hairworms (C. Ernst)

Pterostichus caribou with hairworms (C. Ernst)

When I’m not writing my thesis or putting obscure little black beetles on pins, you can probably find me working at McGill’s Teaching and Learning Services, enjoying my time as a teaching assistant, networking on Twitter, mucking around in my vegetable garden (or putting said veggies in jars), walking my dogs, enjoying nature while canoe tripping with my partner, poking wildlife, or lifting heavy things at the gym. I’m on the hunt for a fantastic postdoctoral position that will allow me to continue studying different communities of living things in other ecosystems, and that factors that affect how they’re put together, and I’m excited about the many opportunities out there!

Meet the 2014 Arthropod Ecology Lab!

Welcome back to the new Academic term!  We had our first lab meeting yesterday, and made sure to run outside to get a “Start of year” lab photo:

The Arthropod Ecology Lab (2014)

The Arthropod Ecology Lab (2014)

From left to right we are: Yifu Wang, Anne-Sophie Caron, Sarah Loboda, Shaun Turney, Chris Buddle, Elyssa Cameron, Jessica Turgeon, Crystal Ernst, Etienne Normandin, and Chris Cloutier.  (missing is Dorothy Maguire)

We are smiling for good reason: September brings enthusiasm, and optimism. We are ready to have an exciting year. Learning from each other, doing science, and sharing our passion for arthropods.  This year, this blog will hopefully host a lot of news from the lab, and will include posts from many of the students. Starting next week, we will roll out “Meet the lab” posts, where each student will write a short post about themselves, and about their projects.  Stay tuned!

Congratulations to the new Doctor of spider behaviour

I’m delighted to announce that lab member Raphaël Royauté successfully defended his PhD yesterday….  and he did it with grace, maturity, and poise. The defence was fair, but tough, and Raphael was able to show his breadth and depth of expertise on the broad topic of behaviour in arthropods.

Raphaël’s thesis was titled “Factors influencing behavioural variation in apple orchard populations of the jumping spider Eris militaris (Araneae: Salticidae)” and the during the defence, he was asked (not by me, remarkably!) to offer a ‘tweet’ of the his thesis. Here it is, coming in at almost exactly 140 characters.

Raph's thesis, in a tweet.

Raph’s thesis, in a tweet.

So, his research looked at behavioural syndromes in this remarkable jumping spider: Raphaël collected spiders in apple orchards, maintained them in a laboratory and ran them through a battery of behavioural test. He defined behaviours, looked at correlations among these behaviours (sometimes called ‘personality’), and how these traits varied during the development of individuals, consistency of these behaviours and whether behaviours differed depending on whether the spiders came from insecticide-free on insecticide-treated orchards.  Raphaël also looked at the direct effect of sub-lethel effects of insecticides on behaviour and will soon be publishing the ways that insecticides mess up their personalities.

Raphaël has really done incredible work – but looking back, I should not be surprised. Soon after he arrived in the lab we worked together on a short project about the activity of spiders right after snowmelt, at at that point, I was impressed with his intellectual curiosity, drive and motivation, and overall approach to scientific research.

Raphael and me, in 2008

Working together on Raph’s first project at McGill

After that first project, Raphaël came back to McGill to work on a PhD with me and Dr. Charles Vincent as co-supervisors. And now, many years later, he is now successfully defended a PhD. What a marvellous journey, and I can honestly say that I’ve learned far more from Raphaël than he could have learned from me.

Good luck Raph! (And you’ll be missed in the lab)

Charles Vincent (l), Raphaël (c) and me (r), just after the Defence (17 March 2014)

Charles Vincent (l), Raphaël (c) and me (r), just after the Defence (17 March 2014)