Social media, mobile technology and an outdoor classroom

Last year, my field biology course took part in an amazing project – we used mobile technology in a field setting, and combined that with social media tools.  This was done in collaboration with Teaching and Learning Services at McGill, McGill Libraries, and the tablets were generously provided by Toshiba.  I am immensely thankful for the support and an truly honoured to be able to explore these adventures in teaching and learning.  More specifically, Laura Winer, Adam Finkelstein and PhD student Crystal Ernst helped make this project a success.

One of the ‘products’ of this pilot project is this 5 minute video about using social media to engage students in inquiry-based learning:

We are continuing with these kinds of initiatives, and a Brown-Martlet Foundation grant has allowed my Department to purchase some of the tablets originally used last year. This is terrific, and as the video illustrates, the students end up benefiting.

This term, the course is again using social media, and you can find details in this post, and follow along with twitter using the hashtag #ENVB222.

The art of delegation: Perspectives from Academia

The talented graduate student (and all-around great guy) Morgan Jackson recently posted a question on twitter, asking for advice on the art of delegation, from an Academic perspective. This question really struck me as important, for graduate students who are pursuing academic careers and for tenure-track academics.  The reason why is pretty obvious: without learning how to delegate, burnout is inevitable.

To delegate means to entrust (a task or responsibility) to another person, typically one who is less senior than oneself.

The issue of how to delegate is, of course, common and widespread in the business community but academia is a bit peculiar. Let me explain my perspective: In some cases, delegation is straightforward, especially if a staff member is paid to do a particular job and if roles and responsibilities are well defined. Although these kinds of hierarchies exist in Universities and research institutes, these environments often include a high amount of volunteerism and some aspects of Universities (and research more generally) are run on collegiality and community-minded thinking.  Scientific societies would disintegrate if people didn’t share the work-load, and if society president’s weren’t able to delegate work to (often unpaid!) treasurers, web-masters and scholarship committees.  Universities wouldn’t operate effectively if Professors didn’t agree to sit on committees, often delegated by the Chairperson. Research laboratories would be unhappy places if some of the chores weren’t delegated, from making sure coffee supplies are well stocked, to ordering supplies – sometimes a paid technician does this work, but not always….

Academia is also full of “reverse hierarchies” – sometimes a more junior person has to ask a more senior person do take on a responsibility or task – this happens all the time: from seeking help putting together a symposium at a conference, to getting people to agree to sit on an editorial board.  Bottom line: there are COUNTLESS tasks in Academia that depend on delegation and often the tasks, roles and responsibilities don’t fit neatly into one person’s formal (paid) job description, and often the ‘senior to junior’ hierarchy isn’t straightforward .

And perhaps the most important point of all….  one of the biggest obstacles to delegation is the fact that many Academics are perfectionists. Academics, by in large, like to be in control of ALL THE THINGS, from preparing a CV, to setting up committee meetings, to driving a car to a field site. Professors, in general, have got to their position because of their ability to DO ALL THE THINGS and do them well. You can’t publish good papers without knowing how to write; you can’t publish papers without solid research funding, so you have to perfect the art of writing grants; you can’t get a post-doc position of tenure-track position without being able to put together a top-notch presentation and deliver it with the skills of a seasoned orator; you can’t get good teaching scores without investing time and energy into perfecting Powerpoint slides and learning the content….  etc., etc., etc.

Screen Shot 2013-08-30 at 4.17.57 PM

However, as Peter Adler wrote over at Dynamic Ecology recently, it doesn’t get any easier. In fact, the job gets more demanding on time, expectations on productivity remain, teaching can be time-intensive, and the Academics are expected to do some administration. From a personal perspective, I am far busier now than I have ever been in the past (but I try not to complain about it).  Good time management skills are not enough to get everything done. What’s needed is an ability to delegate. Again, without effective delegation, burnout is inevitable.

Screen Shot 2013-08-30 at 4.18.53 PM

With that backdrop, how do you delegate?

1) Know the players. Delegation requires knowing your community and knowing the skills and abilities of people within your community, whether it be a graduate student secretary, the treasurer of a scientific society, or a colleague down the hall. Before you can even think of delegation, realize that delegating any kind of work has a real, profound affect on somebody and on how they spend their time. It’s about people, so you must get to know these people! This means networking, whether it be around a coffee maker at work, over twitter, or attending a poster session at a conference.  Pay close attention to everyone you interact with, listen to them, learn their passions, learn what they like to spend their time doing.

2) Play nice. In addition to knowing your community, don’t be a jerk to your community! I mentioned Morgan Jackson at the start of this post; he’s an example of someone who is always willing to lend a hand, say a kind word, and be a team player. He plays nice. I am always happy to help Morgan in return, even though I am (in academic terms) his ‘senior’. This seems SO obvious, but I also know that not everyone plays nice. Some people are selfish, ignore those they deem as ‘inferior’, and require you to grovel to get an answer to an email.  It’s a tough world, and there are big personalities in Academia, and everyone has their own agendas.  This can be difficult to navigate, and politics in Academia can be fierce. However, a strategy that always wins is to play nice. Be collegial, polite, and try not to burn bridges. It’s hard to delegate if there’s nobody left that respects you.

3) Prioritize. Delegation is an art, and one of the trickiest parts is learning what to delegate and what to keep on your own plate. It’s also important to avoid delegating everything. Some things are too close to your own expertise, part of your job description and/or are tasks that you just love too much to give up. However, some tasks can be shared effectively among others, and can move away from your to-do list. Write down ALL that you have to do, and put a star beside those that you cannot see anyone else doing (ahem, if there are stars next to all of the tasks, you will burn out. Start again, and see point #6, below). If your are lead-author on a paper, you sure ought to read over those final page proofs! However, maybe your co-author could do a final check over all references, especially if s/he hasn’t contributed as much to the paper..?

4) Have a vision (& communicate it!). Delegation will not be successful if those you delegate to are not sure what role they are playing in the ‘big picture’.  No matter the size of the task, it is being done for some reason. Having someone give a guest lecture is pretty obvious: the guest lecture helps achieve the learning objectives of the class and gives students a new perspective on the content. Sure, that makes sense. But did you communicate that to both the students and the person giving the lecture? EVERYONE involved needs to understand the ‘why’ behind the jobs and tasks at hand. This means effective delegation requires carefully assessing why tasks are being done, and working to communicate this. If people are part of a vision (even one they may not 100% agree with), it’s a lot easier to get them to take part.

5) Ask and Explain. Sometimes it’s as easy as asking (nicely). This goes much smoother if you have a vision and that you have communicated this vision, as mentioned above. In addition to asking, it’s essential that the tasks you are delegating are clearly defined. A volunteer might agree to sort specimens if you ask them. However, a simple ask may result the job getting done, but perhaps with a lot of mistakes. Asking, and then giving someone a 1 hour tutorial and access to resources on-line will result in fewer errors. Preparing a living document that explains your protocols for sorting and letting them refine and improve the document is even better!  All tasks, regardless of their size, need to be defined. Just because you think it’s easy to do, straightforward, and simple doesn’t mean everyone else will.

6) Let go. (TRUST) I have noticed that many Academics (myself included!) don’t delegate because they say “Ah heck, I already know how to do that, it’ll take too much time to explain or show them how to do it…” or “I’ll do that myself, it’ll be faster“. There are a few problems here. First, if you say this about everything, burnout is inevitable. Second, as an Academic / Researchers/ Post-doc, etc, you are responsible for sharing knowledge and training others, and this takes time. In the time it takes you to ‘just do the task’ five times, you could have trained someone else. Third, this may indicate that you don’t ‘trust’ anyone else to do the job. You must let go of this! Be a perfectionist at the right times, but let some things go. There are errors in everything we do, so sharing them around is fine, for some tasks.  Remember, you have developed a network, you are team player, and you have shared your visions and prioritized, and defined the tasks. It’s time to let go.

Screen Shot 2013-08-30 at 4.14.24 PM

7) Verify. Letting go does not mean letting go forever. There must be follow-up and discussion to ensure the job is done well. Accountability is key. Review the job, first on your own, and then with the person to whom the work was delegated. You must provide constructive feedback, but also listen to ideas, complaints and comments. This will help you redefine the task in the future, and they will feel more responsibility and ownership over the task. This also starts the amazing process of creating someone who can later become a delegator of tasks. This is what mentoring is all about… in your laboratory or classroom, you want people to walk away with confidence in what they do, and with an ability to take their skills sets and pass them along to others.

8) Reward. It’s absolutely essential that you reward those to whom you have entrusted a task or responsibility. If people do not feel their work is valued, and that they have not contributed in an important way, you have failed in effective delegation. If you reward, your vision will grow, your team will respect you, your (positive) network will increase. Rewards can be small or big: A few kind words, a big “THANK YOU”, some homemade cookies, a promotion, or a letter of reference. Here’s an example: I often get graduate students to give guest lectures in my courses. This saves me time, and helps me out when I’m overwhelmed. When students do these lectures, I offer to write them letters or recommendation specifically about their abilities in the classroom. Most take me up on this, and it’s a kind of reward. I also ensure to pass along kind words from the students in the class.

9) Get some training. The art of delegation is seldom on an Academic’s CV. It’s often learned by trial and error, and sometimes never really perfected. Like any skill, training is required. In some cases, informal training is enough. This can be via sitting on committees in scientific societies, learning from effective mentors, or just practicing. However, I think that most Academics are not very good at delegation, and more formal training is required. This could be in the form of workshops, perhaps for all incoming Profs at a University, or as part of a research conference. I would like to see these kinds of ‘management’ skills as part of EVERY graduate student’s program, as perhaps part of the seminar/course work often required during a graduate degree. WE MUST DELEGATE ergo WE MUST HAVE TRAINING.

10) Be a leader. Don’t shy away from leadership. Everything mentioned above is about leadership.  Professors are leaders, perhaps a leader in front of the classroom, as a research leader within your institution, a leading expert in an op-ed piece, or a leader on a committee about academic programs. Effective leaders are effective at delegation; in fact, I might argue it’s impossible to be a leader without being effective at delegation.  Behind every good leader is an even better team. It’s so cliché, but also so very true.

In sum, delegation is about empowerment and leadership. It’s about giving someone else ‘ownership’ over a task that is part of something bigger. Delegation will help you work on things that YOU need to work on, and help you avoid burnout. It’s a required skill for success in Academia.

(BIG thanks to twitter-folks to took part in the conversation about delegation, especially Morgan, Terry, Chris, Staffan, and others)

Arctic reflections (Part 1)

So many clichés  – the Arctic is a vast, stark landscape. In summer, a land of endless days, swarms of mosquitoes and rivers teeming with Arctic char; snowy owls flying low over the tundra; Muskox roaming the lands.

The clichés are true. I’ve been north many times, and each time the effect is stronger. Each time the landscape leaves a deeper impression. Over a couple of blog posts, I want to share reflections about the Arctic from my recent field trip to Cambridge Bay (Nunavut), and try to explain why I love it so much, and why Arctic research is my passion. I’ll also share a few of my favourite photographs from the trip.

Mt Pelly

Arctic Arthropods

I often write that “Arctic biodiversity is dominated by arthropods” and I stand firmly behind that statement. Despite the latitude of Cambridge Bay (at 69 degrees North), the tundra is alive with butterflies, bees, low-flying dipterans, and spiders.  On a warm day, you can sit in the tundra and watch the careful movements of spiders as they navigate their three-dimensional world, seeking prey, or simply sunning themselves.  Over the past few years our research team has documented over 300 species of spiders living across the Arctic and sub-Arctic, and although diversity drops at high latitudes, there are still over 20 species known from the low Arctic Islands, dropping to fewer than a dozen as you approach 80 degrees North.

Arctic wolf spider (Lycosidae), genus Alopecosa

Arctic wolf spider (Lycosidae), genus Alopecosa

Under rocks in flowing water you can find black fly larvae, swaying in the current. Sometimes you find the shield-shaped pupal cases, and if lucky, you can see the emerging adults. These emerging adults are sometimes adorned with red mites. There are arthropods living within the protection of Arctic willow; careful examination of Salix reveals red ‘berries’ which are actually galls. Opening these reveals a hidden life. A secret, protected room containing the larvae of a Hymenoptera.

An Arctic Lepidoptera

An Arctic Lepidoptera (genus Boloria)

Research

A few years ago, the Federal Government announced a new Canadian High Arctic Research Station (CHARS), and it is to be built in Cambridge Bay over the next several years. This station will support and facilitate research in the North, in many different ways, from studies about effects of climate change on permafrost, to research on marine mammals. I am going to do my own research in Cambridge Bay, but with the aim of integrating research about arthropod biodiversity with other Arctic studies. I also hope to help in the development of a long-term monitoring plan, using arthropods as one of the focal taxon. Arthropods can tell us a lot about the world, and how it is changing, and long-term data are needed to ensure we have a clear sense of when ‘change’ is change that we need to pay particularly close attention to.

A malaise trap on the tundra - designed to collecting flying insects

A malaise trap on the tundra – designed to collect flying insects

I was in Cambridge Bay to start to develop these kinds of projects, and to get to know the town, community and the land.  I also wanted to collect insects and spiders in the Arctic in the late-season. I’ve worked in the Arctic a lot over the last several years, and although we have done full-season (i.e., June-August) collecting on the mainland, our laboratory does not yet have a clear idea about seasonal occurrence of different species occurring on the Arctic islands. Therefore, I was doing some collecting so that data could be gathered about arthropods on Victoria island and the end of the summer. For all these reasons, Cambridge Bay was my ‘research home’ for a week or so.

History and People.

Arctic regions of Canada have a rich history – and a history that is both tragic and awe-inspiring. Residential schools, relocation programs and stories of substance abuse, are all part of the darker side of this history. For hundreds of years, Europeans saw the Arctic as a wild land that required navigating, and a land that contained a bounty of riches, from whales to minerals. A bounty that was available for the taking. The stories are remarkable, and evidence of them remain in places like Cambridge Bay, including the influence of the Catholic church and the wreck of Amundsen’s ship, the Maud.  The search for Franklin’s lost ships continues – while I was in Cambridge Bay, a ship departed, in search of the Erebus and the Terror.

The remnants of a Catholic church, built in Cambridge Bay in the early 1950s

The remnants of a Catholic church, built in Cambridge Bay in the early 1950s

The Maud, in its resting place. The townsite of Cambridge Bay is visible in the background

The Maud, in its resting place. The townsite of Cambridge Bay is visible in the background

There has been a rebirth, however – Nunavut is a place of Inuit pride, and includes a wonderful balance between old traditions and new. The Inuit are marvellous – a people exhibiting patience, perseverance, kindness, good humour, and ingenuity. I heard stories of how runners on sleds could be made of frozen bodies of Arctic char, and the cross-braces from bones of wildlife, and frozen mosses would adorn the tops. If times were really tough, parts of the sled were edible.  Today, wood and rope is the preferred construction material!

Sled on the tundra: waiting for winter.

Sled on the tundra: waiting for winter.

Inuit culture is alive and well. I was lucky to spend time on the land with some of the locals, and I learned of edible plants, leaves that can be burned to ward of mosquitoes, and about the lice on arctic hare pelts.  The Inuit are also fabulously artistic, well known for their carvings from bones and fur.

Looking out towards the Northwest Passage.

Looking out towards the Northwest Passage.

Stay tuned for Part 2, to come next week…

A guide for writing plain language summaries of research papers

Some time ago I wrote a post about the need to have plain language summaries for research papers. That post generated terrific discussions, new collaborations and many ideas, and I am now trying to write plain language summaries of my own research as it gets published. The goal of this current post is to provide some guidance about how to write plain language summaries. This work does not come from just from me, but rather from continued discussions with others, notably Mike Kelly and colleagues over at TechTel. The idea of plain language summaries resonates with so many people, from the business and marketing community, journalists, through to science writers, researchers and academics. I am continuing to work with Mike, and will share more as our ideas and projects develop. For now, however, it’s timely to provide some idea about how to write plain language summaries. As usual, your ideas, opinions, and comments are always welcome!

To revisit, what are plain language summaries?

Plain-language summaries are a way to communicate a scientific research papers to a broad audience, in a jargon-free and clear manner. Jargon is defined as technical terms understood only by specialists in a field of study.  In this post, I am assuming that plain language summaries are aimed at a ‘scientifically literate‘ audience, but an audience that is not specific to a discipline. Most scientists who publish in the peer-reviewed literature are familiar with Abstracts – which are a short synthesis of the research, and which typically highlight the research objectives, method and main findings.  Abstract are typically aimed at the audience that will read a specialized journal, but often contain technical terms, and typically jump into a specialized topic quickly and concisely.  A plain language summary is different because it focuses more broadly, is without jargon, and aims to provide a clear picture about ‘why’ the research was done in additional to ‘how’ the work was done, and the main findings.

Plain language summaries are a valuable contribution as they allow research to be accessed by a broader audience, and because the people who do the research write them, the findings are directly from the source and should capture the proper context for the research. Plain language summaries can provide a means to promote research, whether it is through a publisher, on the blog of a scientific society, or for a University’s Media Relations Office. Department Heads and Deans can take these summaries and both understand and promote the high quality science done by their Professors, research scientists, and students. Journalists could read these summaries and not have to wade through technical terms, and have a higher probability of getting the message right. Colleagues can better understand the work that all scientists do, even when disciplines are quite far apart. Other scientists, journalists, the public, government officials, friends and family, can all better understand science if all research papers were paired with a plain-language summary. Plain language summaries make research available, tangible, and are a way to truly disseminate research findings to all who are interested.

How to write a plain language summary:

The first, and perhaps most essential step, is to explain ‘why’ the research was done. The overarching reason and rational for the research must be explicitly stated in general terms. It’s easy to slip into the habitat of justifying research because “Little is known about x, y or z”.  However, this is not adequate for a plain language summary – ‘something’ is surely known on the topic, it’s just a matter of defining that ‘something’ and explaining how the work is expanding beyond, perhaps to a new research direction, or in a different model system.  Mike Kelly, from his perspective (and background) in marketing, was particularly instrumental in helping recognize that the “why” of research is vitally important, and explaining this should never be taken for granted. Scientists need to start a plain language summaries from a broad, ‘big picture’ and more general framework, and work to place their research paper within this context: they must address and answer the ‘why’.  It takes a lot of time to define the ‘why’ and describe it to a broad audience – take the time – it will make the other steps much easier.

The second step is to state the more specific objectives of the research.   This should flow easily from the first step if there is a clear rationale for the work. The research question is a continual narrowing down to a finer study topic, logically flowing from a big picture overview of the discipline into which the research is nestled. A research objective could be phrased as a question, or goal, and may have several sub-questions.

The third step is to explain ‘what’ you did to answer the research objective. Too much detail will be overwhelming and confusing, too little will not allow the reader to envision how things were done. Try doing a flow-chart that depicts the process of the science, and use this as a guide to writing how the work was done. The goal of a plain language summary is not to allow other scientists to follow your methods, but rather to provide readers with a sense of how you did the work, in broad brushstrokes.

The fourth step is to provide an interpretation of results and make them relevant. Unlike a scientific paper, which typically presents results in a linear fashion and independent of a discussion, plain language summaries should integrate the results with a discussion or interpretation. A plain language summary should show readers how the results to fit together and provide insights into the bigger framework or context of the research. It is not necessary to provide all the results, nor is it necessary to provide specific details about each observation of experiment; rather, the results must tell a story and inform the readers of what you found and why the findings are important relative to your research question. The end of your summary should scope out again, and leave the readers will a strong and positive sense about the contribution of your science to the big-picture that you developed at the start.

The last step is to go through the plain-language summary with a keen eye for meaning and jargon.  Assess each sentence and see that the writing is drawing out the meaning from the research, whether it is a description of the study organism or system, or a rationale for quantitative modeling. Without attention to meaning, at all levels, a plain-language summary will be a re-packaged Abstract, which is to be avoided.  Circle or highlight all terms that could be considered jargon  – have a friend, an uncle or a colleague from a different discipline read over the work to confirm that the jargon is gone.  When jargon is identified, rewrite in non-technical terms – it will take more space, but this is better than having terms that cannot be understood by a general audience.

Then: edit, edit, and edit again.

Some hints….

  • If you are visual person, draw the plain language summary before writing it, this will help draw out the meaning and allow you to understand the flow of the summary and how the different sections fit together.
  • It will likely be helpful to first write your plain language summary with headings.  Use headings such as “Why we did this work”, “How we did this work”, “What were the interesting things that we discovered”, etc. Afterwards, re-work the summary to remove the subheadings.
  • Don’t talk down to your audience. A common mistake is the ‘dumbing down’ of the research and this must be avoided. As mentioned, you are assuming the audience for this summary is scientifically literate, and thus you need to speak to them in this way.
  • Aim for about 500 words – more is too much, fewer can be difficult, especially if your research is highly technical.
  • Have your summaries read by other people outside of your discipline, and then have them explain it back to you. If it’s a good summary, the explanation of your own work should be clear, accurate and precise.  If it’s not, find out the trouble-spots and re-work the summary.
  • Finally, don’t rush the process. Plain language summaries are very difficult to write; they take time, and often draw upon skills that have not been part of a researcher’s typical training. Write the summary, leave it for a day or two, and come back to it. It is very important to get it right, as these summaries have the potential to be read by many more people than would normally read a scientific paper within a journal.

In sum, I hope you find that there is value in plain language summaries, and that this guide provides some ideas about how to write one.

You may have more tips or better ideas – please share! (comments welcome…!)

The Mottled Jumper: a new common name for a jumping spider

A couple of weeks ago I set up a poll so that you could help give a jumping spider a common name.  This was all made possible thanks to a series of fun twitter conversations which ultimately led to the list of potential common names for Sitticus fasciger.

Sitticus fasciger, photo by Thomas Shahan, reproduced here with permission.

Sitticus fasciger, photo by Thomas Shahan, reproduced here with permission.

Crowdsourcing a common name received a bit of press (e.g., CBC Homerun, the afternoon radio show in Montreal), and this led to discussions about the process of giving species a common name.  For the record, with about 20,000 described arthropods in Canada, fewer than 1700 have common names (you can refer to the Entomological Society of Canada’s list of common names). There’s a lot of work to do!  There is a committee within the Entomological Society of Canada, and anyone can submit a common name - there is even a fillable form!  However, the common name must make sense, and have some meaning that relates to the species biology, appearance, or life history. A group of experts will evaluate the proposal, and if accepted, a species can receive a common name.  So, after this project with Sitticus fasciger, my work is not done: I will now proceed to get the selected common name officially accepted, and will eventually submit it for approval to the Entomological Society of America, also.

OK, enough of this… what about the poll results?

Screen Shot 2013-07-26 at 9.29.59 AM

Sitticus fasciger: over a hundred people have spoken… and the common name selected is the Mottled Jumper. That name received over 45% of the vote. It is also my personal favourite – mottled refers to irregular arrangement of patches of colour, and is an accurate description of the spider.

In sum, THANKS everyone for taking part – it was a fun project, and hopefully there will be more to come in the future.

At the union of science and art: A giant, robotic spider sculpture

Very amazing stories sometimes come my way, and this one must be shared.  Don Hardy (an artist, creator, and curious man!) approached me with a story and photographs of a 9 foot spider sculpture that he made. Don found me because of the spider bite story that came out a few weeks ago, and he and I immediately developed a rapport despite the fact that we live in different countries, and have different training (me, trained as a scientist; Don, trained as an artist). What do we share?  A love of spiders: a love of their elaborate and unique anatomy, the way they move, and the way they have such an important place in our society – whether it be via adoration, fascination or terror.

So, let’s get right to the good stuff.  Here’s what Don created.

The giant spider sculpture!

The giant spider sculpture!

I am simply amazed and astounded by this beautiful creation!

I asked Don to provide me a few detail about the story behind his piece of art. Here are some exerts from his story, and Don has kindly given me permission to post this story, and his photographs.

I wanted to build a model of a spider for many years. The existing models and toys that I have seen were not real enough for me to appreciate so I decided to build my own version of a spider model. I studied many varieties of spiders and decided to use a combination of huntsman and wolf spider for my project. The initial inspiration was a huntsman spider due to an interesting experience I had at a pawn shop a couple of years ago. I was in the market for an electric piano and found one at a local pawnshop here in the Atlanta area. It was a Kawai model 330 missing the legs so I got a deal on it for 200 dollars! I brought it home and noticed that it had outputs for external speakers so I didn’t need to use the internal speakers at all. I could hook it up to my larger amp and get a bigger sound. I decided to take the internal speakers out and use them for another project later on. As I was taking one of the speakers out a large Huntsman spider came out of the hole! You can imagine how alarmed I was! I admit I jumped a little bit but soon relaxed after I noticed it was dead and dried up. I put it up and started to take out the second speaker. Another large Huntsman fell out of the second speakers hole! An unlikely duet! I put it up and continued to set up the piano for my other amp. The piano worked just fine. It gave me two giant huntsman spiders to contemplate!

Don then proceeded to study, measure and use these spiders as a model for his spider sculpture. Here’s what happened next, in Don’s words:

I used approx. a 40:1 ratio which would make my sculpture about 9 feet across with its legs fully extended. I made probably 20 trips to the local home improvement store and spent about 2 months working in the basement measuring, sawing, gluing, carving and bolting together the various boards, etc. that would replicate a spiders legs, pedipalps, fangs, sternum, cephalothorax and abdomen. I made templates for the eyes, fangs and abdomen. This helped with symmetry, size relationships and outlines for cutting. I also added heavy duty springs for leg tension so it could be self supporting.

Screen Shot 2013-07-23 at 3.12.01 PM

I decided to go with a wolf spiders face which looked more interesting and fearsome to me. The wolfspiders eyes were much bigger and menacing than the huntsmans. And the anatomy was similar enough to switch over to a wolfspiders face without much difficulty. Once the basic structure was completed I started studying many images of huntsman and wolf spiders to paint a pattern on top. I probably used about 20 cans of spray paint before I was satisfied with the pattern. I used some artistic license but still stayed true to basic patterns. These spiders are masters of camouflage and the coloration and patterns blend in perfectly with grasses and terrain.

Screen Shot 2013-07-23 at 3.13.57 PM

Halloween was fast approaching and I was able to display it in my neighbors yard. Amazingly some of the smaller children were crying and running from it thinking it was real! At first I built it as a static sculpture without any plans for further development. As I started studying what I created I realized that there was plenty of room for adding wires, motors and cables to make the fangs move, the pedipalps swing up and down and the abdomen to swing back and forth. Back to the workshop to add additional lifeforce! After drilling and a few more trips to the home improvement store I had a spider that had fangs that moved, pedipalps that swung in and out and an abdomen that shook back and forth!

Don and his spider friend.

Don and his spider friend.

Now it must surely be finished?

It stayed this way for about a year and then I realized I could make the two front legs raise up and down if I installed an actuator and cables on the sternum. I even went a step further and added servos and switches to the actuator and everything else so I could operate all the moving parts with a wireless transmitter! I purchased a Futaba four channel transmitter and four servos. I attached the servos to the sternum carefully lining up the wires and rods. After much tweaking I got it working quite well. The dream had of building a giant mechanical spider was finally coming true!

Um, yes, this giant spider sculpture moves. IT MOVES!  Here’s a youtube video to show the sculpture in its full glory:

In summary, I sincerely thank Don for doing this incredible project, and also being keen to share it with the world. His work is a wonderful union of science and art.

To see some of Don’s other work, you can visit this site.

Screen Shot 2013-07-23 at 3.16.19 PM

Help give this jumping spider a common name

There’s a small brown/grey mottled jumping spider that is very common on the exterior walls of my house. It’s curious, cute, always on the move. A few years ago I identified the species as Sitticus fasciger, a jumping spider known from many parts of Asia, and since the 1950s, from North America. It is now found in Quebec, Ontario, most likely other parts of eastern Canada, Manitoba, and many parts of the USA, west to Missouri.  This species is synanthropic – meaning it lives in close association with humans. More specifically, it’s found most commonly on houses and buildings (at least in the Nearctic).

Sitticus fasciger, photo by Thomas Shahan, reproduced here with permission (see more of his work here!)

Sitticus fasciger, photo by Thomas Shahan, reproduced here with permission (see more of his work here!)

That photo by Thomas Shahan is really stunning, but I must admit that most individuals I have seen are more brown/grey, and less ‘vibrant’ that the photo above. Have a peek at this video of a female (taken at my house) for what I think is more typical coloration:

Little is known about the biology of this lovely little spider – some work by Matsumoto and Chikuni (1987), done in Japan, discusses its life history, and a few nice websites have videos and other summaries of diagnostic characteristics and summaries of its distribution.  (here, by the way, is the original description by Simon).  I’m not certain about the etymology of fasciger. In latin, it refers to a ‘bundle of sticks or rods‘, which is not that informative. As Morgan Jackson points out, in middle Irish it could mean ‘neckband‘ which might refer to some of the coloration on the cephalothorax or abdomen.

This species, however, is lacking a common name, and I seek your help in determining one!

Although there are a lot of opinions about using common names for insects/spiders, I am generally in support of this idea. I think a more general audience likes to use common names, and I think common names can provide a nice context and description that is often missed with a latin name.  The Zebra spider (Salticus scenicus), for example, is a well known cosmopolitan species, and that common names says something about how the spider looks to most people. Similarly, the Dock (or Wharf) spider is a nice common name for Dolomedes tenebrous since a wharf is a very common habitat!  I think it’s a pretty ambitious task to give all species a common name, but I do think more common species should be given a common name.

So, with that introduction, let’s pick a common name for Sitticus fasciger.  I asked for suggestions on twitter, and discussed this topic with a few people. I have set up a poll, below, with some of these suggestions. I’ll leave the poll open for a couple of weeks (until 25 July), and then share the results with you. I will then work to get this name formally accepted by both the Entomological Society of Canada and the Entomological Society of America.

–POLL CLOSED–