A naturalist and his moquitoes

This is another in the “meet the lab” series – here’s a feature by MSc student Chris Cloutier:

I can’t remember a time when I wasn’t fascinated by the world of creepy crawly things. For as long as I have been able to grasp and crawl I have been collecting and observing insects and spiders. Although my mother wasn’t always fond of the critters I would trek through the house, my parents were very supportive of my curiosities and did their best to nurture my interests. As a family we would go camping and fishing often, introducing me to the world outside of our backyard and ultimately landing me where I am today.
My passion for studying insects began many years ago with my first entomology course in CEGEP. After completion of that program I enrolled at Macdonald campus of McGill University. Before I even started my first semester I got my first real taste of applied entomology, when Chris Buddle hired me for several months during the summer to be his field and lab technician. Let’s just say that from that point onward I was hooked.

While studying at Mac I really started to discover where my interests were in this very diverse field. I was intrigued with the ecology and natural history of insects and the amazing things that they do. I really enjoyed learning about insect-human interaction, and for some reason I was very interested in disease transmission and parasitism and the amazing enzootic pathways they can take.

Chris Cloutier: the man, the naturalist, the legend.

Chris Cloutier: the man, the naturalist, the legend.

My Master’s research began in early 2014. I had been working for several years at the Morgan Arboretum, a forested property owned by McGill, when my employer, and now co-supervisor, Dr. Jim Fyles approached me with the idea of performing some graduate research using the Arboretum as a study area. I jumped at the idea of doing this, and we got Chris Buddle on board right away. My thesis will be analysing the temporal variation of mosquito community composition across a habitat gradient which includes suburban areas, fields and various forested sites within the Morgan Arboretum. One of the reasons for this research is the fact that in many suburban and forested areas around Montreal, mosquito densities reach near intolerable levels during the summer months. This, coupled with the increasing number of cases of arbovirus (arthropod-borne viruses) infections, such as West Nile Virus, the importance of understanding where mosquitoes are located, and when, as well as which species are present is becoming more and more important.
Collection of mosquitoes takes place for 24h once a week for the entire frost free period, typically from April to November in Montreal. The traps I use to collect mosquitoes are quite specialized and are designed to capture only females which are seeking a blood meal (the ones that we worry about on our strolls through the woods!). These traps use a combination of LED light and carbon dioxide to attract the insects. The LED lights draw in mosquitoes from quite some distance, and the CO2, produced with the help of a few kilograms of dry ice, draws them ever closer to the trap. Once in range, a tiny fan sucks them into a mesh catch-bag and they are trapped.

Chris in the field, checking a trap.

Chris in the field, checking a trap.

When not out in the field, I spend most of my time with my eyes firmly attached to a microscope, sorting, identifying, and counting mosquitoes. After my first field season, I have collected just over 43,000 mosquitoes representing 9 genera and approximately 28 species. I am now faced with the task of analysing the data and making sense of all those numbers, which in fact has revealed some interesting patterns already. I’m looking forward to heading out next spring to start all over again.

The hard work.

The hard work.

I consider myself to be a “geek of all trades” with interests in everything from birding, to plants, herps and pretty much everything in between. I rarely leave home without my binoculars, and during the summer I almost always carry some vials, an aerial net and several field guides (yes, I often get some strange looks…). I’m also a husband and more recently, a father too. My wife still hates mosquitoes but I feel her coming around slowly, and my daughter doesn’t know it yet, but she will be spending an awful lot of time outdoors with us.
Follow me on twitter @C_Cloutier15 or email me at christopher.cloutier@mail.mcgill.ca if you would like to know more about what I am up to and how things are going with my research.

Studying natural history by stealth

Natural history can be defined as the search for, and description of, patterns in nature. I see natural history research as a more formal and structured approach to studying and recording the natural world. I also see this kind of research as a branch science that is often driven by pure curiosity. Many well-known and popular scientists are naturalists (ever hear of David Attenborough or E.O. Wilson?), and we can see that curiosity is one of the underpinnings of their work and personalities. Natural history research is, without doubt, very important, but in world of academic research, it sure doesn’t headline as pulling in multi-million dollar grants, nor does “natural history” appear in the titles of high profile research papers.

Is there a place for curiosity-driven natural-history research in today’s science? If so, how do we study it in the current climate of research?

Arctic wildflowers. Worthy of research... just because?

Arctic wildflowers. Worthy of research… just because?

This is big question, and one that we grapple with occasionally during my lab meetings. Most recently this came up because I challenged one of my students when they wrote about how important their research was because “…it hadn’t been done before“. In the margin of their work, I wrote “…so what? You need to explain how your work advances the discipline, and the explicit reasons how your research is important independent of whether or not it has been done before“.

Am I wrong? Is it acceptable to justify our research endeavours because they haven’t been done before?

The context matters, of course: some disciplines are very applied, and the funding model may be such that all or most research is directed, project-oriented. The research may have specific deliverables that have importance because of, perhaps, broader policies, stakeholder interests, or needs of industry. In other fields, this is less clear, and when working in the area of biodiversity science, such as I do, we constantly stumble across things that are new because they haven’t been studied before. And a lot of these ‘discoveries’ result from asking some rather basic questions about the natural history or distribution of a species. These are often things that were not part of the original research objectives for a project. Much of natural history research is about discovering things that have never been known before and this may be part of the reason why natural history research isn’t particularly high-profile.

Here are just a few examples of interesting natural history observations from our work in the Arctic:

This is the first time we observed the spider species Pachygnatha clerki on the Arctic islands!

Wow, we now know that an unknown parasitoid species frequently parasitizes the egg sacs of a northern wolf spider species!

Females of this little pseudoscorpion species produce far more offspring than what had been previously documented!

Now, if I wanted to follow-up on any of these observations, I think it’s fair to state that the research would be curiosity-driven, and not necessarily grounded in a theoretical or conceptual framework. It’s the kind of research that can be rather difficult to get funded. It’s also the kind of research that is fulfilling, and a heck of a lot fun.

I'm likin' these lichens. And surely data about them is required...

I’m likin’ these lichens. And surely data about them is required…

How then do you study such fascinating aspects of natural history? How do you get out to the field to just watch stuff; record observations just for the sake of it; spend time tabulating life history parameters of a species just because it’s interesting?

Perhaps you have the luxury of doing natural history research as your full-time job: You may be able to sit back and have people send you specimens from around the world, and maybe go out on an extended collecting trip yourself. You may be lucky enough (and wealthy enough?) to devote serious amounts of time to “think”, measure and record data about species. Perhaps you can even take a long walk each day to mull over your observations. Maybe you will gather enough observations to eventually pull together some generalities and theories, and perhaps you will get around to writing a book or manuscript about this….

Reality check: Most of us don’t have that luxury. Instead, we chase grants, supervise students, do projects that fit in with our unit’s research area, and publish-or-perish in the current model of academic research. Despite how we might long for the “good old days” of academia, they are gone (at least in my discipline). It’s rare that a University Professor or research scientist is hired to do stuff just to satisfy her or his own curiosity.

That main sound depressing to some, and hopeless, but it’s not meant to be. I do believe there are still ways to do exciting and interesting natural history research, and we can call it research by stealth.

In my field of study, establishing a research programs means getting grant money, and these are often aligned with priorities that matter to government, to policy, or to a particular environmental threat such as climate change or invasive species. It’s important to get these grants, and work with students and collaborators to try to solve some of the large and complex problems of the world. I am not advocating avoiding this. Instead, as we move along with these big projects, there are also countless opportunities to do a little natural history research, by stealth. Our first priority may not be the collection of natural history data, but nothing stops us from finding creative ways to make careful and meaningful natural history observations.

When taking a lunch break on the tundra, take a little longer to watch the Bombus flying by, or write down some observations about the bird fauna in your local study site, even if you aren’t an ornithologist. Keep a journal or sketch a few observations while you are sitting in the back of the field truck on that long drive up to the black spruce bogs. Each year, buy a field guide for a different taxon, and learn new stuff alongside your focused project. This ‘spirit’ of natural history observation is one that I promote to my own students, and I encourage them to follow up on some of these as a side-project to their main thesis research. Often, these end up being published, and end up in a thesis, and they certainly end up informing us more about our study species or study area.

Lunch break on the tundra: an opportunity for natural history observations

Lunch break on the tundra: an opportunity for natural history observations

Despite writing all of this, I still think my comment in my student’s writing will remain: we have to look at the importance of our research in the context of the bigger picture – it’s not enough to say something is important because it hasn’t been done before, and I’m not sure a PhD thesis can (or should) be entirely based on natural history observation. I would not be doing my job as a supervisor if I promoted curiosity-driven natural history research as the top priority for my student’s projects. To be candid: they won’t get jobs or publish papers in the higher profile journals (i.e., those ones that matter to search committees), and they won’t be well equipped when they leave my lab and head to another institution.

…But I will promote natural history research by stealth.

I think there is loads of room for curiosity-driven natural history research in today’s science. We may need to be creative in how we approach this, but, in the end, it will be worth it. We satisfy our curiosity, and learn a little more about the world along the way. We will also gain perspective and experience, and my students will be well equipped for a future in which natural history research is valued more highly then it is now.

Homage to the squished mosquito

This work comes from a student* in my field biology class. Part of the course includes students keeping a “field journal“, and that assignment allows an opportunity for students to express their thoughts and observations about nature in many different ways, from writing, to art, and poetry.


A mosquito, before the squish. (photo by Alex Wild, reproduced here with permission)

A mosquito, before the squish. (photo by Alex Wild, reproduced here with permission)


O squished mosquito, you omnivorous parasite,

Why could nectar not quench your hunger, like your male counterpart?

Why must you thirst for my blood?


Of course, you need blood for egg production,

But to what lengths will you go to continue your lineage?

Was it my personality that drew you in? Or simply my CO2 expulsion?


Your ultimate death has left me with no answers;

Only a bump on my skin filled with histamine and regret.


Your short life makes me itch to know more about who you were

…or perhaps that’s just the anticoagulant in your saliva.


While the swelling in my arm may decrease,

My pining for you never will.


R.I.P., mosquito




What does this poem tell me, as an instructor?

It tells me that students can express natural history and biology in many different ways.

It makes me think that the student will remember the basics of mosquito biology a lot more than had this been on a multiple choice or short-answer examination.

It shows the power of allowing emotion to find its tendrils into science. We ought to embrace this a lot more.


*the student shall remain nameless until after the course is finished, but will eventually be credited appropriately

Expiscor (4 November 2013): the obscure edition

Last week I had a terrific discussion with a twitter friend, and he suggested that many/most of the links on Expiscor are ones that were VERY frequently discussed over various social media sites – i.e., a re-distribution of commonly viewed stories. Of course, that is part of the objective of Expiscor, but I also want to be a provider of stories people haven’t heard about previously. So, CHALLENGE ACCEPTED! This week my goal is to provide links to things that are so weird, and obscure that you will totally surprised. It’s the obscure edition….  Please take the poll at the end of this post to let me know if I succeeded!

  • Steampunk, clockwork Goliath Beetle.  I want this. Available from BrazenDevice (thanks, Evan, for allowing me to post the photo here. Ento-geeks will love it!)

Screen Shot 2013-11-02 at 1.29.41 PM

  • The Echinoblog...check out this blog description: Echinodermata! Starfish! Sea Urchins! Sea Cucumbers! Stone Lillies! Feather Stars! Blastozoans! Sea Daisies! Marine invertebrates found throughout the world’s oceans with a rich and ancient fossil legacy. Their biology and evolution includes a wide range of crazy and wonderful things. Let me share those things with YOU! ….The question is: How did I ever miss this blog. Awesome.

Screen Shot 2013-10-31 at 4.40.13 PM

  • Tweet of the week goes to Leonard Nimoy (Ok this is NOT at all obscure, but it sure is funny):

Screen Shot 2013-11-04 at 7.45.48 AM

My favourite spider species: a natural history story 120 years in the making

A little while ago my nephew asked me what my favourite spider was. I quickly answered “Peckhamia picata“, in part because I had recently returned from a field trip in which that species was collected (a trip to one of my favourite places in Quebec), but also because the species has the most amazing habitus: is a myrmecomorph – a species that looks a heck of a lot like an ant. Here’s a photo to illustrate this:

A species of jumping spider in the genus Peckhamia (photo by Alex Wild, reproduced here with permission)

A species of jumping spider in the genus Peckhamia (photo by Alex Wild, reproduced here with permission)

So, what does this species do? What are its behaviours? Where does it live?

I started digging around to see what literature exist on this species. There are certainly many publications that discuss its distribution – it is on many checklists (see here for a relatively complete list), and I was aware that it was originally described as Synemosyna picata (by Hentz, in 1846).

I did a search of Web of Science for publications with the species name, and came up with two hits. One was a systematics papers on a related genus of jumping spider, and the second was a paper by Durkee et al. in 2011*.  They did some laboratory studies of the species, to assess whether or not its ant-like appearance helped it avoid being eaten by predators (spoiler: the answer is yes). A little more digging on-line took me to various sites, and in some cases, I came across this statement:  “almost no information on them

What?  Really?

A Peckhamia picata, from Quebec (Photo by J. Brodeur, reproduced here with permission)

A Peckhamia picata, from Quebec (Photo by J. Brodeur, reproduced here with permission)

Peckhamia picata is a widespread species, with an incredible appearance, and it’s a jumping spider!  Salticids are the darling of the arthropod world –> the panda bears of the invertebrates: big eyes, furry, fascinating courtship behaviours, and truckloads of ‘personality’.  Surely we know SOMETHING about what I declared as my favourite species.

Thankfully, in a filing cabinet in my laboratory, I have a series of older publications on the Salticidae, including “A Revision of the Attidae of North America” by Peckham & Peckham (1909) [available here as a PDF download – note: big file!]. The George and Elizabeth Peckham did an incredible amount of work on the Salticidae (called Attidae, previously). The Peckhams are themselves a fascinating story – some details are on their Wikipedia page  and I’ll summarize briefly: they were teachers (in Wisconsin), natural historians, behavioural ecologists and taxonomists, notably with jumping spiders.  The bulk of their work was done in the late 1800s, and they often cited and discussed Darwinian concepts. They were awesome and I would have liked to meet them.

Another stunning Peckhamia species, this one from Thomas Shahan.

Another stunning Peckhamia species, this one from Thomas Shahan.

So, back to Peckamia picata: Their 1909 tome states the following about the species “We have described in detail its mating and general habits in Vol. II, Part 1 of the Occ. Pap. Nat. Hist. Soc. Wis. pp. 4-7)”.

So, apparently 1909 does not take us far enough back in history to learn about Peckhamia picata. Their paper from 1892 had all the details, and thankfully was fully accessible on the biodiversity heritage library.

Screen Shot 2013-10-03 at 10.40.42 AM

Here is some of the lovely writings about Peckhamia picata, from the Peckhams, in 1892 (transcribed from their papers):

About appearance:

While picata is ant-like in form and colour, by far the most deceptive thing about it is the way it which it moves. It does not jump like the other Attidae [Salticidae], nor does it walk in a straight line, but zig-zags continually from side to side, exactly like an ant which is out in search of booty. This is another illustration of which Wallace has shown in relation to butterflies ...”

(note: The Peckhams give a node to that Wallace guy….)

About feeding behaviour:

Spiders commonly remain nearly motionless while they are eating; picata, on the other hand, acts liks an ant which is engaged in pulling some treasure-trove into pieces convenient for carrying I have noticed a female picata which, after getting possession of a gnat, kept beating it with her front legs as she ate, pulling it about in different directions, and all the time twitching her ant-like abdomen

Regarding courtship:

From the Peckham's 1892 publication.

From the Peckham’s 1892 publication.

His abdomen is lifted vertically so that it is at right angle to the plane of the cephalothorax. in this position he sways from side to side. After a moment he drops the abdomen, runs a few steps nearer the female, then then tips his body and begins to sway again. Now he runs in one direction, now in another, pausing every few moments to rock from side to side and to bend his brilliant legs so that she may look full at them.”

In sum, this journey of discovery has made me fall in love with Peckhamia picata even more. It’s also reminded me that OLD literature is essential to our current understanding of the species we identify. There is a wealth of information in these “natural history” papers – although the writing is in a different style, it is scientific, it is the foundation of current biodiversity science.  We cannot ignore these older books and “Occasional papers”. We can’t rely on quick internet searches and we certainly can’t rely on literature indexed on Web of Science.

We must dig deep and far into the past. There are ‘treasure-troves’ aplenty.


*The oldest paper cited in Durkee et al. is from 1960. They did not cite the Peckhams.

Another Peckhamia species, courtesy of Matt Bertone (reproduced here, with permission)

Another Peckhamia species, courtesy of Matt Bertone (reproduced here, with permission)


Durkee, C. A. et al. 2011. Ant Mimicry Lessens Predation on a North American Jumping Spider by Larger Salticid Spiders. Environmental Entomology 40(5): 1223-1231

Peckham, G.W., and E.G. Peckham. 1892. Ant like spiders of the family Attidae Occ. Pap. Nat. Hist. Soc. Wis. II, 1 .

Peckham, G.W., and E.G. Peckham. 1909. Revision of the Attidae of North America. Trans. Wis. Academy of Sci., Arts & Letters. Vol. XVI, 1(5), 355-646.

Undergraduate students tweet their research questions.

As part of my field biology class this term, students (in groups) are working on research projects about natural history. As part of this, they have set up twitter accounts, and groups were challenged to “tweet their research question“.

This is a great exercise: it forces concise writing, and allows for help and feedback in the development of a good research question.

Here are the tweets – please feel free to direct comments to the groups! (the research projects are officially starting today, 1 October) [click on the tweet to get to the group’s twitter accounts)

Screen Shot 2013-09-30 at 4.42.11 PM

Screen Shot 2013-09-30 at 4.44.05 PMScreen Shot 2013-09-30 at 4.44.52 PMScreen Shot 2013-09-30 at 4.45.39 PMScreen Shot 2013-09-30 at 4.46.28 PMScreen Shot 2013-09-30 at 4.47.13 PMScreen Shot 2013-09-30 at 4.48.32 PMScreen Shot 2013-09-30 at 4.49.32 PMScreen Shot 2013-09-30 at 6.03.48 PMScreen Shot 2013-09-30 at 8.19.48 PM

And yes, these groups DID receive help from people outside of the course (and from around the world) as they developed their research question. For example, the group studying medicinal plants discussed some ideas over twitter with a biologist in Germany:

Screen Shot 2013-09-30 at 4.53.48 PM

And in the following conversation, the Chickadee group received some reinforcement from Prof. Margaret Rubega, at the University of Connecticut, about the need to develop a solid research question:

Screen Shot 2013-09-30 at 4.56.18 PM

SO… what do YOU think?  Could you tweet your research question? Can you help these students improve their questions? Feedback, as always, is welcome!

Expiscor (16 September 2013)

Bringing you another week of discoveries… Expiscor is here!

  • Don’t believe me? Well here’s a photo from that blog post (reproduced here, with permission)

    (photo copyright C. Ernst)

    (photo copyright C. Ernst)

  • The path of least resistance. A wonderful post about evolution, from Malcolm Campbell. I love this quote:  “Evolution shows us that, contingent on the forces that shape them, paths of least resistance can lead to stunning innovation
  • Ok, I know you are now ready for a spider photograph, courtesy of Thomas Shahan (reproduced here, with permission)
Jumping spiders are the best.

Jumping spiders are the best.

Screen Shot 2013-09-15 at 2.51.17 PM

  • And a spidery video to finish things off. So awesome: