Monitoring northern biodiversity: picking the right trap for collecting beetles and spiders

Ecological monitoring is an important endeavour as we seek to understand the effects of environmental change on biodiversity. We need to benchmark the status of our fauna, and check-in on that fauna on a regular basis: in this way we can, for example, better understand how climate change might alter our earth systems. That’s kind of important.

A northern ground beetle, Elaphrus lapponicus. Photo by C. Ernst.

A northern ground beetle, Elaphrus lapponicus. Photo by C. Ernst.

With that backdrop, my lab was involved with a Northern Biodiversity Program a few years ago (a couple of related papers can be found here and here), with a goal of understanding the ecological structure of Arthropods of northern Canada. The project was meant to benchmark where we are now, and one outcome of the work is that we are able to think about a solid framework for ecological monitoring into the future.

A few weeks ago our group published a paper* on how to best monitor ground-dwelling beetles and spiders in northern Canada. The project resulted in over 30,000 beetles and spiders being collected, representing close to 800 species (that’s a LOT of diversity!). My former PhD student Crystal Ernst and MSc student Sarah Loboda looked at the relationship between the different traps we used for collecting these two taxa, to help provide guidelines for future ecological monitoring. For the project, we used both a traditional pitfall trap (essentially a white yogurt container stuck in the ground, with a roof/cover perched above it) and a yellow pan trap (a shallow yellow bowl, also sunk into the ground, but without a cover). Traps were placed in grids, in two different habitats (wet and “more wet”), across 12 sites spanning northern Canada, and in three major biomes (northern boreal, sub-Arctic, and Arctic).

Here’s a video showing pan traps being used in the tundra:

Both of the trap types we used are known to be great at collecting a range of taxa (including beetles and spiders), and since the project was meant to capture a wide array of critters, we used them both. Crystal, Sarah and I were curious whether, in retrospect, both traps were really necessary for beetles and spiders. Practically speaking, it was a lot of work to use multiple traps (and to process the samples afterwards), and we wanted to make recommendations for other researchers looking to monitor beetles and spiders in the north.

The story ends up being a bit complicated… In the high Arctic, if the goal is to best capture the diversity of beetles and spiders, sampling in multiple habitats is more important than using the two trap types. However, the results are different in the northern boreal sites: here, it’s important to have multiple trap types (i.e., the differences among traps were more noticeable) and the differences by habitat were less pronounced. Neither factor (trap type or habitat) was more important than the other when sampling in the subarctic. So, in hindsight, we can be very glad to have used both trap types! It was worth the effort, as characterizing the diversity of beetles and spiders depended on both sampling multiple habitats, and sampling with two trap types. There were enough differences to justify using two trap types, especially when sampling different habitats in different biomes. The interactions between trap types, habitats, and biomes was an unexpected yet important result.

Our results, however, are a little frustrating when thinking about recommendations for future monitoring. Using more than one trap type increases efforts, costs, and time, and these are always limited resources. We therefore recommend that future monitoring in the north, for beetles and spiders, could possibly be done with a trap that’s a mix between the two that we used: a yellow, roof-less pitfall trap. These traps would provide the best of both options: they are deeper than a pan trap (likely a good for collecting some Arthropods), but are yellow and without a cover (other features that are good for capturing many flying insects). These are actually very similar to a design that is already being used with a long-term ecological monitoring program in Greenland. We think they have it right**.

A yellow pitfall trap - the kind used in Greenland, and the one we recommend for future monitoring in Canada's Arctic.

A yellow pitfall trap – the kind used in Greenland, and the one we recommend for future monitoring in Canada’s Arctic.

In sum, this work is really a “methodological” study, which when viewed narrowly may not be that sexy. However, we are optimistic that this work will help guide future ecological monitoring programs in the north. We are faced with increased pressures on our environment, and a pressing need to effectively track these effects on our biodiversity. This requires sound methods that are feasible and provide us with a true picture of faunal diversity and community structure.

It looks to me like we can capture northern beetles and spiders quite efficiently with, um, yellow plastic beer cups. Cheers to that!


Ernst, C, S. Loboda and CM Buddle. 2015. Capturing Northern Biodiversity: diversity of arctic, subarctic and northern boreal beetles and spiders are affected by trap type and habitat. Insect Conservation and Diversity DOI: 10.1111/icad.12143


* The paper isn’t open access. One of the goals of this blog post is to share the results of this work even if everyone can’t access the paper directly. If you want a copy of the paper, please let me know and I’ll be happy to send it to you. I’m afraid I can’t publish all of our work in open access journals because I don’t have enough $ to afford high quality OA journals.

** The big caveat here is that a proper quantitative study that compares pan and and pitfall traps to the “yellow roof-less pitfall” traps is required. We believe it will be the best design, but belief does need to be backed up with data. Unfortunately these kind of trap-comparison papers aren’t usually high on the priority list.

Vouchers? What vouchers? Revealing a crisis in arthropod-based research

Here’s a hypothetical scenario:

Q: “Hey I see you published a paper that shows the wolf spider Trochosa ruricola occurs up in the Ottawa Valley – I didn’t realize it had reached that far. It’s an invasive species, so tracking its distribution is quite important

A: “Yeah, we too were surprised it was up that far: to our knowledge, only Trochosa terricola was in that part of Ontario

Q: “It is tricky to tell apart those two species! What museum did you deposit specimens in? I’d like to take a look at them to verify the identification.

A: “Um, we didn’t get around to depositing specimens in the museum. There might still be some in the lab. I’ll have to get back to you...”

Not cool.  And also much too common.

Bottom line: when specimen-based research is done with arthropods, whether it is a biodiversity inventory, a community ecology study, or a taxonomic revision, the researchers must deposit voucher specimens in a research museum or institutional collection. This is only way to truly verify that the work is accurate, that people are calling things by the same name, and it puts a stamp in time for the research. Without deposition of these voucher specimens (somewhere that is publicly accessible and curated, and along with data about time, place and collector) the research cannot be verified, and this goes against the principle of repeatability in science.

Beetles in drawers: a great example of specimens in a curated museum, and shows how such specimens can be used for all kind of research!

Beetles in drawers: a great example of specimens in a curated museum, and shows how such specimens can be used for all kind of research!

This is a no-brainer, right? It’s time to test whether or not scientists actually bother to deposit voucher specimens…. As part of a graduate-level* class in Entomology last winter, we surveyed the literature to find out the frequency of voucher deposition with arthropod-based research. We looked at papers to see what percentage actually report on vouchers, assessed whether the frequency of voucher deposition varied by research type, study organisms, institution (of researcher), and whether voucher deposition has changed over time.

We published the results a few weeks ago, in the Open Access journal PeerJ, and our work has revealed a crisis in arthropod-based research. Overall, rates of voucher specimen deposition were very low, as only 25% of papers report on the deposition of voucher specimens. This is horrible, and essentially means that the specimens from the majority of papers published cannot be traced to a collection, and cannot be verified.

Some disciplines were worse than others, as crustacean researchers deposited vouchers only 6% of the time, as compared to the relatively higher rate of voucher deposition by entomologists, at 46%. Here is a summary of the main findings:

The main findings of our research: the asterisk illustrates a significant difference relative to a global mean.

The main findings of our research: the asterisk illustrates a significant difference relative to a global mean. Figure from our paper, published here.

Is there any good news? Perhaps so… when looking at rate of voucher deposition over time, more papers are reporting about vouchers in 2014 (35%) compared to 1989 (below 5%).

At the end of our paper we provide some conclusions and recommendations, and these are repeated here:

  1. PIs must be responsible and proactive on the process of voucher specimen deposition, from the start of any project.
  2. Graduate students need to be mentored appropriately about the importance of voucher specimen deposition.
  3. It needs to be recognized that voucher specimens are important for all branches of arthropod research – there is no reason that entomologists should do better than, say, crustacean biologists.
  4. Close collaboration between Universities/Research Centres and Museums is required, so that there is an agreed up, and easy process for all researchers to deposit vouchers.
  5. Everyone involved with arthropod-based research needs to work together to push for long-term, sustainable funding for institutional collections/museums so that proper curation of vouchers can be done.
  6. Publishers and editorial boards need to have clear policies about voucher specimens, so that any papers published are required to report on vouchers.

I recognize that the title of this post is provocative. Is it *really* a crisis?

I think it is: I think that even the best rate of voucher deposition that we report on is too low. We must aim to be closer to 100%. It’s important as we work to describe the world’s biodiversity, understand what is happening to our species in the face of climate change, or track the distribution of invasive species. It’s important that our hard work is more than a publication: our hard work is often a specimen, and that specimen needs to be accessible for future generations.

Voucher for critters than need to be stored in liquids looks something like this.

Voucher for critters than need to be stored in liquids looks something like this.


Turney S, Cameron ER, Cloutier CA, Buddle CM. (2015) Non-repeatable science: assessing the frequency of voucher specimen deposition reveals that most arthropod research cannot be verified. PeerJ 3:e1168

* A most sincere thanks to my graduate students Shaun, Elyssa and Chris – these students did the lion’s share of this project, and took on this graduate class with great enthusiasm, maturity and motivation. You all inspire me!

Curiosity, passion and science: On the natural history of an Arctic pseudoscorpion

I’m pleased to announce a publication about the natural history of a tiny, wonderful arachnid: the pseudoscorpion Wyochernes asiaticus.

The Arctic pseudoscorpion Wyochernes asiaticus (copyright C. Ernst, reproduced here with permission)

The Arctic pseudoscorpion Wyochernes asiaticus (photo by  C. Ernst, reproduced here with permission)

I’ve published quite a few papers, but this one is really special: it’s special because it’s about an obscure creature for which virtually *nothing* was known. It’s about a species with a fascinating distribution. To me, it’s an epic tale about a species that nobody really cares that much about. It’s special because it is research that was done just out of pure curiosity and fascination: there was no larger purpose, no great problem to solve, and no experiments to run*. It was based on observation and observation alone, and it was a long slog – done over many, many years (it took about 7-8 years to pull together this story, and this story is really only a prologue). Fundamentally this research was about trying to gather some base-line data about a small animal living in a big landscape.

The big landscape: A river above the Arctic circle: our pseudscorpion friend can be found under the rocks alongside this river.

The big landscape: A river above the Arctic circle: our pseudscorpion friend can be found under the rocks alongside this river.

This work presents some life-history data about a fascinating northern pseudoscorpion species, occurring only in the north-west of North America. As far as I know, it occurs only in regions that were primarily unglaciated during the last glaciation event which covered pretty much all of the northern half of the continent. However, unlike other Beringian species (e.g., the wooly mammoth), this little arachnid did not go extinct but rather continues to thrive in its somewhat unusual habitat under rocks, near rivers or streams.

After collecting and measuring nearly 600 specimens, I can now tell you a bit more about the species distribution in North America, and provide some insights into its life history traits. For example, larger females tended to have higher clutch sizes, a very common and well-known pattern with other arachnids, but there was certainly a paucity of data about this for pseudoscorpions. I also know that all its life stages can be collected in the Yukon in July, and that females can carry around quite a few young (over a dozen!).

But that’s about it. Beyond those fundamental life history measurements and comments on its distribution, the bulk of the species biology remains a mystery.

It may be possible to look at this work as a failure. Heck – a LOT of specimens were collected, by many, many enthusiastic helpers. It took some resources to get the work done (although it was mostly through stealth). A lot of time was spent at the microscope, and it certainly took a bit of time to pull together the paper. And what for? We still don’t know very much about the species: how does it disperse? How does it overwinter? How does it survive flooding of its habitat? How restrictive are the habitat affinities of the species? Do females and males tend to hang around the same rock, or do they mill about with others? What does it eat?

I don’t see this as frustrating, or discouraging, because it’s a start. Before thinking about bigger questions in ecology and evolution, your first need some basics. Only then is it possible to ask broader questions about, say, phylogeography, dispersal limitation, or behaviour.

I hope this work encourages others to seek out and discover new and interesting things about the unnoticed species that walk underfoot, live in tree-tops, swamps, or beneath park benches.

The Arctic pseudoscorpion, Wyochernes asiaticus

Another image of the Arctic pseudoscorpion, Wyochernes asiaticus taken during the 2015 field season

I was very pleased to publish this work in the Canadian Field-Naturalist. Sure, it’s not a ‘high impact’ journal, but it’s a rather special and unique journal for being an excellent location to publish work on the natural history of our species. I hope others consider this journal as an outlet for their curiosity-driven science. Over time, I hope the pendulum does swing, and as a scientific community we really embrace the value of “basic” natural history data. Without a fundamental working knowledge of our species we are hamstrung when it comes to solving the big environmental challenges facing our planet. It’s time to play catch-up. Let’s worry less about impact factors and show some love for smaller journals that are brave enough to keep on publishing about natural history. Let’s spend time observing our natural world, collecting interesting data just because.

I ended my paper with a paragraph about what it felt like to do this research. I am so thankful the editors allowed me to keep this paragraph. It’s important, and reflects my long-standing belief that the lines between a subjective love of nature, and objective observations about nature, should be blurred. They certainly are for me.

In conclusion, observing these marvelous animals in one of the most beautiful areas of the planet, was gratifying, awe-inspiring, and helped solidify a love of natural history. What has been learned is only the prologue to a truly astounding epic: many more discoveries await.


*Please check out this amazing blog post about the value of ‘observation’ to ecology. It relates closely to what I have written.

© C.M. Buddle (2015)

Yukon field work: Arachnids, landscapes, and the inspiring North

It’s a dream for an arthropod ecologist: a dramatic biome transition from boreal forest to subarctic tundra, a beringian landscape, and diverse and abundant insects and spiders. I have just returned from field work along the Yukon’s Dempster Highway, Canada’s only road to cross the Arctic circle. And again, I was not disappointed!

A stretch of the Dempster Highway

A stretch of the Dempster Highway

This year’s expedition was focused on three projects:

1) Tiny, wonderful arachnids:

On this trip, I continued to document the distribution of an arctic Pseudoscorpion, Wyochernes asiaticus. This is a beringian arachnid, known from the old world, and known in North America from almost exclusively unglaciated parts of the Yukon and Alaska. Like wooly mammoths and giant short-faced bears, these tiny arachnids roamed North America while the rest of the top half of the continent was buried under ice. But unlike the mammoths and giant short-faced bears, the Arctic Pseudoscorpion is not extinct! It’s a relict of the past, thriving today under rocks near beringian rivers and streams. I have been working on this species for many years (and a life history paper about this arachnid will appear in the Canadian Field-Naturalist sometime this month), and each time I visit the Yukon, I leave with more questions, and more specimens. This time, I collected some animals to hopefully work on their population genetics: I am curious about the relatedness among the populations from different watersheds along the Dempster Highway (by the way, I am seeking collaborators [phylogeographers!] for this work… If interested, let me know!)

The Arctic pseudoscorpion, Wyochernes asiaticus

The Arctic pseudoscorpion, Wyochernes asiaticus

2) Northern food webs:

I have left my PhD student Shaun Turney up in the Yukon (along with his field assistant) where he is working on characterizing the arthropod-based food webs along the latitudinal gradient of the Dempster Highway. Past research has given some hints that northern food webs may be atypical, but to fully test this we decided to characterize the entire fauna from 1 x 1 m patches of the tundra. This involved placing tents over the tundra, and Shaun collected critters within those tents, and even “vacuumed” the tundra within the square metre. Shaun started this work near the stunning Richardson mountains above the arctic circle, and over the month of July, will repeat the sampling at different locations along the Dempster Highway.

Shaun Turney, vacuuming the Tundra.

Shaun Turney, vacuuming the Tundra.

3) Thermal biology of wolf spiders

Colleagues from Western University joined me in the Yukon to start some projects related to the thermal biology of the extremely abundant Pardosa wolf spiders which inhabit the tundra. There are several species that occur along the Dempster Highway, and when the weather is good, it’s quite possible to collect hundreds of individuals over the span of several hours. Past work has suggested the density of these spiders is about 0.5 per square metre, and those past estimates certainly seemed accurate on this trip also! The spiders will be taken back to their lab, and I am eager to find out how northern Pardosa may be adapted to Yukon conditions.

Searching for wolf spiders on the Tundra

Searching for wolf spiders on the Tundra

All the sciency parts of our field work were exciting and gratifying, but there are other reasons why the Yukon is special*: it is a breathtakingly beautiful place. From stubby black spruce trees to tufts of tundra-dwelling cotton grass, every turn of the highway or footstep over a hummock is a treat. It’s not all easy (hordes of mosquitoes at some of the campgrounds, or being driven off the tundra by cold rains and strong winds), but it is all inspiring.

The lines between science and passion are blurred on the tundra, and that is a good thing. Searching for spiders is work that is fun; seeing a northern shrike or watching two lonely caribou dart up a river valley is fun that comes with the field work. I am immensely grateful for being able to hike under midnight sun, and be a northern researcher during the day. I am delighted to be able to discover some of hidden secrets of the Yukon.

The northern landscape, near the Yukon-Northwest Territory border.

The northern landscape, near the Yukon-Northwest Territory border.

For more photos of the recent trip, check out my Flickr page.


* my colleague Terry Wheeler shares a passion for the Yukon – here is his post which outlines why he keeps returning to the region.

Beetles from the North

I’m super-excited to announce new research from the lab, published yesterday with lead author Dr. Crystal Ernst.

Crystal’s paper focused on taxonomic and functional diversity of beetles across 12 sites in northern Canada, ranging from Labrador to the Yukon Territory, and from the bottom of James Bay all the way up to the tip of Ellesmere Island. This work is result of the Northern Biodiversity Program: a multi-institutional collaborative project about the ecological structure of northern Arthropods.

Crystal Ernst, on the tundra.

Crystal Ernst, on the tundra.

The paper was titled “Drivers and Patterns of Ground-Dwelling Beetle Biodiversity across Northern Canada” and in this research Crystal sorted and identified over 9,000 beetles from 464 species, and she classified the species by their functional ecology to assess how functional diversity may vary across the large spatial scale of this project. Instead of re-writing a summary here, I thought to use this blog post as an opportunity to reflect on what I see as the critical findings from this work, and why this is a paper that I’m incredible proud to be a part of.

  • To me, one of the more interesting findings of this work was that the functional diversity of beetles varied by latitude: although beetles do many things (e.g., herbivore, decomposers, carnivores), it doesn’t seem like all these functions happen at all latitudes. For example, although we document an impressive number of carnivores at all the sites, they are relatively more common in the more northern locations. This is a bit peculiar, and suggests that food-webs involving arthropods vary in some important ways depending on the biome. We also document that temperature is a major explanatory variable when considering functional diversity, which raises the important question about potential effects due to climate change. Indeed, should temperatures change in the north, this may affect the functional ecology of beetles, which in turn could affect other parts of the system.


Figure 1 from the paper: Fig 1. Map of the 12 study locations (North Pole Azimuthal projection), showing the spatial distribution of functional groups. These were pooled into trophic groups, and the pie charts show the proportion of the total site biomass represented by each trophic group

Figure 1 from the paper: Fig 1. Map of the 12 study locations, showing the spatial distribution of functional groups. These were pooled into trophic groups, and the pie charts show the proportion of the total site biomass represented by each trophic group

  • The research generally supported the well-known pattern in biogeography about how species richness decreases at more northern latitudes. When looking at which environmental variable may explain this pattern, temperature again came out on top. In other words, what beetles are found where is in part due to the temperatures in that region. Climate change scenarios therefore have significant potential effects on beetles in the north: beetles, like most other arthropods, are tightly linked to temperature. Even small changes in temperatures in the north may have big consequences for beetles.
  • One of the other big findings, to me, was the fundamental value of species-level data for an important taxa, across vast areas of Canada. Crystal recorded new Territorial and Provincial records for 15 beetle species, increasing knowledge about northern biodiversity. I’m also pleased that the data are fully available on-line, via Canadensys, so other researchers can access the information, re-analyze data, and benefit from and build upon this work.
  • The Arctic is special: it is a vast, cold, treeless landscape, with blankets of tundra, and permafrost underfoot. But it’s also special for beetles. After Crystal analyzed the community-level beetle data, using ordination methods, it became apparent that assemblages from the Arctic Islands of Canada were distinct from the sub-Arctic and north-Boreal sites. From a conservation perspective this is quite important. To some, the Arctic may come across as a big, ‘life-less’ region, with the odd polar bear roaming about, but in reality it hosts thousands of species, including hundreds of beetle species, and that beetle community is very different from what we find in other parts of North America. Special things deserve recognition and protection.
  • Every journalist I talked to has asked “Why beetles?” This is an easy one to answer: they fill virtually all roles in ecosystems, they are diverse, they are of interest to many people, and they are beautiful. The latter point is an important one, as it is important to capture curiosity and fascination about arthropods.


Carabus vietinghoffi. Photo by Henri Goulet.

A northern beetle: Carabus vietinghoffi. Photo by Henri Goulet.

In sum, this was a terrific project to be involved with, and our lab (and our collaborators) are thrilled that the efforts from the Northern Biodiversity program are showing up in the literature (for more examples, check out this, or this).

And rest assured, there’s more to come…

Earthworms at the Morgan Arboretum

This is a post written by undergraduate student Jessica Turgeon – she’s finishing up a project about earthworms.

When I was a child, you could always find me either in a tree or in the dirt. I liked to follow the ants up into the trees and back down again, where I would switch over to digging for earthworms. I loved the feeling of soil between my hands and thinking to myself that these little worms were responsible for making the soil the way it is. I now know that the process is a bit more complex than this but overall, five year old me was almost right.

JessicaI spent my whole life loving nature, especially those living in it. By high school I became a strong advocate for environmental protection, even helping a teacher create a bylaw in my municipality to stop parents from idling in front of elementary schools. This experience truly opened my eyes to the will power and determination this generation has when it comes to changing old mentalities about the environment.

When choosing a university to go to, there was no doubt in my mind whether I should apply to Environmental Biology at the Macdonald campus of McGill or not. This program combines both of my passions: nature and its diversity and environmental management. I’ve since embarked on an amazing journey that has shaped me as a person.

Being around so many naturalists rekindled my love for earthworms, so much so that I decided that I wanted to conduct a research project about them. With the help of Chris Buddle (McGill) and NSERC USRA, I decided to take on a project detailing their biodiversity at the Morgan Arboretum, a nearby forest.

Earthworms can greatly affect Southern Quebec soils because all of the species found here are invasive1. Forests have evolved without the help of earthworms, meaning that earthworm burrowing action is somewhat of a new experience for the trees1. The worms break up and mix the soil when they crawl, leaving the soil readily susceptible to erosion2. While earthworms are prized by gardeners as natural tillers, this can have drastic effects on hardwood forests2.

It was important to me to find out where certain earthworms were in the Morgan Arboretum and why they were there. Soils vary in their composition and properties, meaning that some are more suitable for earthworms than others. The goal of my project was to analyze three different soil types (sandy, clay, loam) with regard to earthworm species. I did so by sampling in the three soils and by collecting and analysing the soil using basic soil analyses.

I found no earthworms in the sandy soil over the course of the sampling period, strongly suggesting that no earthworms inhabit sandy soils. Sandy soils are too rough and painful for earthworms to crawl through, therefore they are actively avoided. The clay and loam soils had much higher numbers of individuals, with 9 species each. After statistical testing, it was concluded that there is no significant difference between the two soils and it could be said that they are similar in biodiversity. In addition, a strong correlation between particle density (how dense the soil is) and earthworm abundance was found. As particle density increases, to a certain extent, so does abundance.

Earthworm Sampling

To conclude, my data suggests that the clay and loam soils in the Morgan Arboretum are similar in biodiversity, both supporting an equally diverse number of earthworm species. However, the sandy soil does not contain any earthworms, suggesting that this type of soil is incapable of supporting earthworm activities. This is interesting information for soil management, since, in terms of earthworm abundance and biodiversity, clay and loam soils are similar.

Earthworms are essential ecosystem engineers that change the soil to better suit their lifestyle and this is why they are often studied. Hopefully my story has encouraged readers to respect earthworms a bit more; after all, they do much more than be an excellent fish bait!


[1]        Cameron, E. K., Zabrodski, M. W., Karst, J., & Bayne, E. M. (2012). Non-native earthworm influences on ectomycorrhizal colonization and growth of white spruce. Ecoscience, 19(1), 29-37.

[2]        Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil Ecology,  32(2), 153-164.


An ode to graduate students

Last week I saw two of my graduate students successfully defend their PhDs. This is wonderful and exciting, and I am delighted that they are both moving on to post-doctoral research positions in other places. I am also saddened by their departures: seeing good students leave the lab creates a vacuum. This has caused me to reflect about the effect graduate students have on their supervisors:

I write, teach, research.

I see classrooms, computers, forests and fields.

I use keyboards, iPads, PowerPoint, and pipettes.

I publish or perish.

LOIs, RFPs, IFs, and h-factors.

Grants, emails, to-do lists and budgets.



Literature and libraries can start the process,

But books and blogs barely break the silence.

It’s the tangible human that makes the difference.

My colleagues, my friends:

You are the Academy.

Do you have the answers?

How to avoid wandering alone in ivory towers?

How to slow the withering on tenured vines?

How to grasp frail tendrils of discovery?

How to find that perfect chorus of voices, words, arguments and insights?

Search again.

Find hope and optimism in our laboratories.

Open the door to the greatest discovery of all:

It’s their keen intellect, smiles, kind words or questions.

It’s crafted by their company.

Caffeine-fuelled conversations critique, criticize, challenge.

(Coffee is never bitter with graduate students)

Embracing curiosity, creativity and collaboration.

Wrangling words together: perform, propose, predict.

Execute, explain, engage.

Fieldwork, funding, fellowship.

Null hypothesis, clear objectives, conceptual frameworks.

Significance and broader impact,

Contributions to knowledge.

Contributions for humanity.

I hope I did enough; I wish for more.

Fleeting moments are now warm memories:

Catching spiders on the tundra, or caterpillars in the canopy.

Thank you, students: you teach me.

We move beyond metrics and money.

We write, we study, we learn.

We discover.

We grow.

Crystal Ernst successfully defended her PhD on 23 Feb.

Crystal Ernst successfully defended her PhD on 23 Feb.

Dorothy Maguire (middle) successfully defended her PhD on 27

Dorothy Maguire (middle) successfully defended her PhD on 27 Feb. Elena Bennett was Dorothy’s co-supervisor.