Trophic cascades in fragmented forests

Many birds eat insects and spiders. Some of these insects and spider are themselves predators, feeding on critters lower down in the food web. Some of the insects that are fed upon by birds, or other predators, also play important roles in forest, such as munching upon the fresh, green leaves of young trees (here’s a reminder).

Munch, munch, munch. The hungry caterpillar. (photo by Sean McCann, reproduced here with permission)

Munch, munch, munch. The hungry caterpillar. (photo by Sean McCann, reproduced here with permission)

These interactions are ongoing, all the time, in forests around the world. These forests, however, are changing in important ways. Some of them are getting smaller and smaller as humans continue to encroach on the land, via urbanization or agriculture. This results in a ‘fragmented’ landscape. A landscape with small forest patches, perhaps no bigger than your back yard. A landscape with larger forests, perhaps one in which you could get lost in. These forests are themselves connected to each other –sometimes directly by a corridor or hedgerow.

This is the context for PhD student Dorothy Maguire’s research. Within that context, Dorothy tackled a fascinating project, one that was just recently published. In this work, Dorothy and co-authors (including me, an undergrad at that time, Thomas Nicole, and McGill Professor Elena Bennett) put cages around small trees in different types of forests SW of Montreal. The cages (made of chicken wire) were in place to test the effects of ‘predator exclusions’ on the insects and spiders occurring on saplings. The prediction is that if you exclude larger predators, such as birds, this may allow a ‘release’ of other insects and spiders. In turn, this release may have trickle-down effects on an important process occurring in young trees: herbivory. For example, if a predator is more common because it’s not being eaten by birds, perhaps it will eat more caterpillars, which may mean the leaves on trees will be eaten less frequently. In ecology this is dubbed a ‘trophic cascade’. Dorothy did this work in the context of fragmented forests, and she worked in forests that were either small and isolated from other forests, or in forests that were large and connected to other forests. This was done because there’s an expectation that these ecological effects will be different depending on the degree of fragmentation happening on the landscape. For example, insectivorous birds may decrease in abundance in small, isolated patches, which means their effects on insect prey (and perhaps herbivory) may be reduced relative to effects in larger patches of forest.

Dorothy Maguire, working in a forest fragment.

Dorothy Maguire, working in a forest fragment.

During one summer field season, Dorothy and Thomas wrapped up some small sugar maple trees in chicken wire, left some alone as controls, counted insects and spiders over the summer months, and measured herbivory on the trees themselves. As expected, the effects of the ‘cage’ was significant: when you put a cage around a tree, you end up with more arthropods living on those trees. This confirms other papers which report a similar effect: insectivorous birds (and perhaps other vertebrate predators) have a significant, and meaningful impact on the insects and spiders living on trees. Or, stated another way, birds eat critters living on trees, and without these birds, there would certainly be more arthropods around!

Dorothy did not uncover a strong effect on the process of insect herbivory: although more insects and spiders were living in the trees protected by chicken wire, the leaves themselves were not affected. This could be because more insect predators were around, and thus compensating for the lack of birds, and eating just as many herbivorious insects (e.g., caterpillars) as the birds might have eaten.

The lanscape of southern Quebec. Lots of agriculture, some patches of forest.

The lanscape of southern Quebec. Lots of agriculture, some patches of forest.

Scaling up to the landscape context, there were no overall significant effects of the cage treatments in relation to the forest type, nor was the level of herbivory dependent on the landscape context. The general results for large, connected patches were no different than for small, isolated patches. However, the magnitude of the effect was marginally affected by the landscape context for the cage exclusion: vertebrate predator may have a more significant impact in smaller, isolated patches.

As with all research projects, this work resulted with as many questions as answers, which is equally frustrating and fascinating. It’s clear that vertebrate predators are important in these systems, but more work is needed to fully assess whether these effects are truly affected by the degree of forest fragmentation on the landscape. The lack of effects on the process of herbivory itself was equally intriguing – there are clearly many complex interactions occurring on small maple trees. Some of these interactions involve top-down predation events, but there are likely a suite of ‘bottom-up’ effects that are also influencing the system.

Reference:

MAGUIRE, D. Y., NICOLE, T., BUDDLE, C. M. and BENNETT, E. M. (2014), Effect of fragmentation on predation pressure of insect herbivores in a north temperate deciduous forest ecosystem. Ecological Entomology. doi: 10.1111/een.12166

The effect of insecticides on jumping spider personalities

This post was written by C. Buddle and R. Royaute (a PhD student in the Arthropod Ecology lab).

We are pleased to announce a recent publication from our lab, titled Interpopulation variations in behavioral syndromes of a jumping spider from insecticide-treated and insecticide-free Orchards.  As is traditional in the lab, here’s a plain language summary of the work:

Agriculture has strongly intensified in the last 60 years, causing major concerns the sustainability of biodiversity. Agricultural practices can reduce habitats available for wildlife and also release toxins in the environment through the use of pesticides. Not all organisms living in agricultural fields are harmful, and many predators, including spiders, can help to reduce pest density. We have a relatively good knowledge that the diversity of spider species in agriculture, especially under our temperate latitudes, can help reduce pest damage. However, many of the factors that influence spider predation on pests depend on the outcome of behavioural interactions and we don’t know much about that topic. Spiders are often cannibalistic and aggressive with one another and these types of behaviours may limit their efficiency for pest control. We also need to understand if these aggressive tendencies vary depending on the type of agricultural field considered, a pesticide treated field may favour very different behaviours than one that is managed organically. Another important point is that populations are composed by a multitude of individuals, each with its own behavioural tendencies. Some individuals take more risks when confronted with predators (i.e. they are more bold), others are more active and explore larger areas or consume more prey. These tendencies – often referred to as personality traits – may also be correlated with one another.

In the context of agriculture, this may mean that certain individual spiders may contribute more to biocontrol because they consume more prey, or that certain individuals are more at risk of being in contact with pesticides because they are more active. To understand, how agricultural practices, and particularly insecticidal applications, affects personality and behavioural syndromes in spiders, we focused on the jumping spider Eris militaris, an abundant and charming jumping spider occurring in apple orchards in Quebec. Here’s a lovely photo from Crystal Ernst to illustrate how attractive they are: (thanks, Crystal, for permission to post the photo here!)

Screen Shot 2013-11-26 at 3.34.45 PM

We collected spiders from pesticide-treated and pesticide-free orchards, brought them back to the laboratory, and did a number of behavioural tests on the individuals from the two populations. Compared to the insecticide-free populations, we document that individuals from orchards that did receive insecticides experienced a shift in their behaviours syndromes. The overall shape of this syndrome is multidimensional, but it suffices to say that the correlations among different behaviours (the ‘syndromes’, otherwise known as the ‘personality’) differed depending on where the population came from.

A 'mirror test' - used to study behaviour in E. militaris (photo by R. Royaute)

A ‘mirror test’ – used to study behaviour in E. militaris (photo by R. Royaute)

In sum, the personality shifts that we documented for E. militaris are potentially quite important since the relationships between different behaviours may affect a spider’s ability to be an effective generalist predator in apple orchards. We need to consider how management  (including use of insecticides) may affect specific behaviours, and more importantly, the relationships between the different behaviours.

Reference

Royaute, R., C.M. Buddle & C. Vincent. 2013.  Interpopulation Variations in Behavioral Syndromes of a Jumping Spider from Insecticide-Treated and Insecticide-Free Orchards. Ethology. doi: 10.1111/eth.12185

Tablets in the forest: using mobile technology in Higher Education

I am pleased to present a publication that came out earlier this week in Educause Review On-line. This article resulted from a pilot project done in Fall 2012, in which students in my field biology class at McGill used tablets to enhance experiential learning.  Authors on the paper included colleagues from Teaching and Learning Services at McGill (Adam Finkelstein and Laura Winer), and PhD student Crystal Ernst.

Here are the ‘take away’ messages from the project:

  • Environmental biology students mobile devices to gather rich data in the field and to support learning through real-time interaction with their instructor and the larger research community.
  • The project included an analysis of survey and interview data to determine the impact of tablet use on student engagement once the project was complete.
  • Students recognized the value of the tablets as a research tool; however, the tablets’ most important contribution to learning was the real-time communication and feedback they enabled between students, instructors, and the scientific community.
A group using a Toshiba tablet to help identify an aquatic invertebrate

A group using a Toshiba tablet to help identify an aquatic invertebrate

Stated another way, tablets are wonderful to use, and can be effective tools in a field biology course, but the students felt connectivity (which facilitated communication) was essential: the mobile WIFI units paired with the tablets made the project successful.  Here’s a quote from the paper to further illustrate that point:  “most students (53 percent) reported that the tablets increased their interaction with the instructor and TA. This was corroborated by their responses on tool use: 72 percent of students thought that live communication with the instructor and TA helped develop their skills.”

I previously highlighted a video from that project on social media use in the class, and the video (below) is more specifically about the use of the tablets in the class.

This work was done in collaboration with Teaching and Learning Services at McGill, McGill Libraries, and the tablets were generously provided by Toshiba Canada, and Bell Mobility helped us with mobile WIFI units.  I am immensely thankful for the support and I am truly honoured to be able to explore these adventures in teaching and learning.  We are continuing with these kinds of initiatives, and a Brown-Martlet Foundation grant has allowed my Department to purchase some of the tablets originally used last year.

Lunch in the tree-tops for the birds and the bugs

A few weeks ago, our laboratory published a paper in PeerJ (an open-access journal) titled “Vertical heterogeneity in predation pressure in a temperate forest canopy“. This work resulted from a project by former Master’s student Kathleen Aikens. She graduated a little while ago, and although we published one of her thesis chapters in 2012, it took another year to get this paper out, in part because Kathleen and I both become too busy.  Thankfully, post-doc Dr. Laura Timms agreed to help us finish up the paper, and she worked with me and Kathleen to re-analyze the data, re-write some sections, and whip it into shape.

As is now traditional for my laboratory, here’s a plain-language summary of the paper:

Tree canopies, including those in deciduous forests in southern Quebec, are important for many different animals, including insects and spiders. These small, marvelous creatures crawl up and down trees with regularity, feed upon the leaves of trees, feed upon each other, and are food for animals such as birds and bats. Past research has shown that many species of insects and spiders live in tree canopies, and in general, more insects and spiders are found closer to the ground compared to the very tops of the trees. This makes sense, since deciduous tree canopies often need to be recolonized each spring, and tree canopies are relatively harsh environments – they are windy, hot, and often-dry places as compared to the forest floor.  What we don’t know, however, is whether the insects and spiders avoid the tree canopies because they may be eaten more frequently in the canopy as compared to the understory. The objective of this research was to test this question directly, and find out whether insects and spiders are arranging themselves, vertically, because predators may be preferentially feeding on them along this vertical gradient. This is a very important area of study since biodiversity is highly valued and important in forests, but we cannot fully appreciate the status of this diversity without discovering what controls it.

image

Our mobile aerial lift platform. TO THE CANOPY!

We did this work by using two experiments that involved manipulating different factors so we could get at our question in the most direct way possible. In the first experiment, we made ‘cages’ out of chicken wire and enclosed branches of sugar maple trees in the cages. We did this at the ground level all the way to the tops of trees, using a ‘mobile aerial lift platform’. These cages acted to keep out large predators, such as birds, but allowed insects and spiders to live normally on the vegetation. We counted, identified, and tracked the insects and spiders both within these cages, and in adjacent branches that did not have cages (the ‘control’). By comparing the control to the cage, we could find out whether feeding activity by larger vertebrate predators affected insects and spiders, and whether this differed when comparing the ground to the top of the trees. In the second experiment, we used small pins and attached live mealy worms (larvae of beetles) to the trunks of trees, and we did this in the understory all the way up to the canopy. We watched what happened to these mealy worms, and compared what happened during the day and overnight. This is called a ‘bait trial’, and let us figure out what sort of predators are out there in the environment, and in our case, whether they fed more often in the canopy compared to the ground-level. This second experiment was designed for seeing the effects of insect and spider predators along a vertical gradient whereas the first experiment was focused more on vertebrate predators (e.g., birds).

image

Munch munch. Carpenter ants feeding on mealworms.

Our results from the first experiment showed that the cages had an effect: more insects and spiders were found when they were protected from predation by birds. Birds are playing a big role in forest canopies: they are feeding on insects and spiders, and in the absence of vertebrate predators, you might speculate more insects and spiders would occupy trees. Our second experiment showed that ants were important predators along the tree trunks, and overall, the most invertebrate predators were found in the lower canopy. Both experiments, together, confirmed that the understory contained the most insects and spiders, and was also the place with the highest amount of predation pressure.  The take-home message is that there is an effect of predation on insects and spiders in deciduous forests, and this effect changes if you are in the understory as compared to the top of the canopy. We also learned and confirmed that insects and spiders remain a key element of a ‘whole tree’ food web that includes vertebrates such as birds, and that predators in trees tend to feed on insects and spiders along a gradient. Where there is more food, there is more predation pressure! Our work was unique and novel because this is the first time a study of predation pressure was done along a vertical gradient in deciduous forests. It will help better guide our understanding of forest biodiversity, and the processes that govern this diversity.

A more detailed discussion of this work is posted on the PeerJ blog.

Seasonality of Arctic Beetles

I’m excited to report on paper written by Crystal Ernst, PhD student in my lab, and well known as the “Bug Geek“. This paper is a product of the Northern Biodiversity Program (yes, it sure is great that the papers from this project are starting to appear!), and will be one of Crystal’s PhD thesis chapters. The paper is titled Seasonal patterns in the structure of epigeic beetle (Coleoptera) assemblages in two subarctic habitats in Nunavut, Canada

A very nice Arctic beetle! (photo by C. Ernst, reproduced here with permission)

A very nice Arctic beetle! (photo by C. Ernst, reproduced here with permission)

Here’s a plain-language summary of the work:

Although we often think of Arctic systems as cold and lifeless, Canada’s tundra habitats are home to a high diversity of arthropods (insects, spiders and their relatives). Beetles are important insects on the tundra – filling ecological roles as predators (feeding on other insects), herbivores (feeding on plants), mycophages (feeding on fungi), and necrophages (feeding on dead or decaying animals). In this research, we wanted to find out what happens to ground-dwelling Arctic beetles as a function of seasonality. We were curious about whether different species occurred at different times during the short Arctic summer, and whether the functions of the beetles changes over the summer. This is an important area of study because beetles perform important ecological functions, and knowing how these functions change over time may have broader implications for northern ecosystems. This is especially relevant in the Arctic since these systems have a short ‘active season’, and climate change is disproportionally affecting northern latitudes. If climate change alters an already short summer, what might happen to the beetles?

This research was done as part of the Northern Biodiversity Program (NBP) – a broad, integrative project about the diversity of insects and spiders across northern Canada. The NBP involved collecting samples at 12 sites in the Arctic, but at one of these sites (Kugluktuk, in Nunavut) we had an opportunity to do a more detailed collection over the entire summer of 2010. This involved setting out traps for the entire active season, from June through to August. These traps were plastic containers sunk into the ground – beetles that wander along the tundra fall unawares into these traps, which contain preservatives, and are trapped until a researcher collects the samples. Traps were placed in wet and (relatively) dry habitats so that we could compare the two habitats. After the collections were returned to our laboratory, the beetles were identified to species, counted, and the biomass of the beetles was estimated – biomass lets us determine what happens to the ‘amount of beetles’ on the tundra in addition to figuring out ‘how many’ (abundance) and ‘what kind’ (species) were in the traps. The beetles were also classified into their key ecological roles. The data were then compared as a function of when traps were serviced to let us assess what happens to beetles as a function of seasonality.

We collected over 2500 beetles, representing 50 different species – remarkably, 17 of these species represented new Territorial records. This means that 17 of the species that were identified had never before been recorded in all of Nunavut! Although many ecological functions were represented by the beetles we collected, most were predators. We documented that wet habitats had different kinds of beetle species than the drier tundra habitats, even though the actual number of species between the habitats did not differ. We also uncovered a seasonal affect on the functions of beetles in the system – as the season progressed, the beetles tended to be represented more by predators compared to earlier in the season, which was dominated by beetles representing a diversity of functions. The mean daily temperature also related to the seasonal change that was observed in the beetles.

PhD student Crystal Ernst, happily working on the Arctic tundra.

PhD student Crystal Ernst, happily working on the Arctic tundra.

This work is one of the first to carefully quantify how beetles change during short Arctic summers. We found a diverse assemblage of beetles, filling a range of ecological roles. These ecological roles, however, do not stay the same all summer long, and the shifts in the beetles were related to mean daily temperature. Given that Arctic systems will be significantly affected by climate change, this is worrisome – if temperatures increase, or become more variable, this may affect ecosystem functions that are mediated by beetles. This is more evidence supporting the need to track climate change in the Arctic, and play close attention to the small animals of the tundra.

Reference:

Ernst, C., & Buddle, C. (2013). Seasonal patterns in the structure of epigeic beetle (Coleoptera) assemblages in two subarctic habitats in Nunavut, Canada The Canadian Entomologist, 145 (02), 171-183 DOI: 10.4039/tce.2012.111

Assessing five decades of change in a high Arctic parasitoid community

As my colleague Terry Wheeler mentioned on his blog, our Northern Biodiversity Program team is thrilled to see post-doc Laura Timms‘s paper about Arctic parasitoid wasps published in Ecography!  Our team worked on Ellesmere Island, Nunavut, in 2010, and compared parasitoid wasps to historical collections from the same site that were made in 1961-65, 1980-82, and 1989-92. Parasitoid wasps are at the top of the insect food chain: they lay eggs inside or on top of other arthropods and the wasp larvae emerge after consuming their hosts – a gruesome but very common lifestyle for many types of wasps.  Species at higher trophic levels, such as these parasitoid wasps, are often the first to respond to new environmental pressures, including the climate change that is occurring rapidly in Arctic systems.

Laura identified a LOT of wasps, recorded the type of host attacked (e.g. plant-feeding hosts versus hosts that are predators), and the body size of two species of wasps that were commonly collected in all time periods.  We found no clear pattern of change in most aspects of the parasitoid wasp community on Ellesmere Island over past 50 years, even though temperature and precipitation have increased significantly during the same period. However, there were some signs that parasitoids of plant-feeding insects may be more affected more than other groups: one common parasitoid species that was abundant in 1960s hasn’t been collected since then, and the community in the 2010 study contained fewer parasitoids of plant-feeding insects than previous studies.

Screen shot 2013-01-28 at 10.52.40 AM

Some members of the Northern Biodiversity Program working in the Yukon in 2012. (l-r, Chris Buddle, Laura Timms, Crystal Ernst and Katie Sim)

Laura takes it as a good sign that no major changes in the ecology of the high Arctic parasitoid community have been observed, but isn’t taking it for granted that the community will remain unaffected for long.  At 82°N, Ellesmere Island is relatively isolated, but other research has found that parasitoid communities further south are changing dramatically (Fernandez-Triana et al 2011).

Laura has the following comment about our work: “We hope that our findings will be used as baseline data for ongoing monitoring on Ellesmere Island”, said Timms.  “We know so little about these high Arctic insect communities, we should learn as much as possible about them while they are still intact.

References

Timms, L., Bennett, A., Buddle, C., & Wheeler, T. (2013). Assessing five decades of change in a high Arctic parasitoid community Ecography DOI: 10.1111/j.1600-0587.2012.00278.x

Fernandez-Triana, J., Smith, M., Boudreault, C., Goulet, H., Hebert, P., Smith, A., & Roughley, R. (2011). A Poorly Known High-Latitude Parasitoid Wasp Community: Unexpected Diversity and Dramatic Changes through Time PLoS ONE, 6 (8) DOI: 10.1371/journal.pone.0023719

Where did all the spiderlings go? A story about egg-sac parasitism in Arctic wolf spiders

This week we are in a deep freeze in the Montreal area, so it seems somewhat fitting to discuss Arctic spiders.  I’ve discussed the life-history of Arctic wolf spiders (Lycosidae) before, specifically in the context of high densities of wolf spiders on the tundra.    Much of this work was done with my former PhD student Joseph Bowden.  The latest paper from his work was published last autumn, and was titled ‘Egg sac parasitism of Arctic wolf spiders (Araneae: Lycosidae) from northwestern North America‘. In this work we document the rates of egg sac parasitism by Ichneumonidae wasps in the genus GelisThese wasps are fascinating, and we have found them to be very common on the tundra.  There are often multiple wasps in a single egg sac, and as is typical with Gelis, they leave nothing behind: all eggs within an egg sac are consumed.  After fully developed, the adult wasps pop out of the egg sac; the Gelis adults we encountered had both winged forms and wingless females, the latter superficially resembling ants.

A Gelis emerging from a wolf spider egg sac. Photo by Crystal Ernst, reproduced here with permission.

A Gelis emerging from a wolf spider egg sac. Photo by Crystal Ernst, reproduced here with permission.

The rates of parasitism of Pardosa egg sacs (by Gelis) were, at some sites, extremely high.  In some cases over 50% of the wolf spider egg sacs were parasitized.  Stated another way,  half of all the females encountered with egg sacs had zero fecundity because the female was  carrying around wasps within the egg sac instead of spider eggs.

It’s quite interesting to think about these wingless Gelis femalesafter emerging from egg sacs, they end up wandering around the tundra in search of hosts.  Spiders with egg sacs must be encountered frequently enough for the wasps to grab on to a passing wolf spider in order to parasitize the egg sac.  Recall, densities of wolf spiders can be very high in the Arctic (4,000 per hectare, at least).  Hmmm…. this is all starting to fit… high densities of wolf spiders support high rates of egg parasitism and these wasps can ‘afford’ to be wingless since their hosts are frequently encountered:  an interesting feedback loop!   We can also speculate about large-scale gradients in diversity – many Ichneudmonidae show high diversity in northern regions.  Within Gelis, it’s a good bet that they will find many suitable spider hosts in these environments.

Looking down the microscope - all those Gelis!

Looking down the microscope – all those Gelis!

So, how extreme are these rates of egg parasitism?  Looking at some of the literature, there are certainly a number of papers about  wasps that parasitize spider egg sacs.  Cobb & Cobb (2004) studied two Pardosa species in Idaho, and recorded a egg parasitism rate of about 15% (by Gelis wasps and wasps in the genus Baeus [Sceleonidae]). Van Baarlen et al (1994) studied egg parasitism in European Linyphiidae spiders and their maximum rates of parasitism were about 30%.   Finch (2005) did a detailed study of four spiders species (non-Lycosidae) and rates of egg parasitism varied between 5% up to as high as 60% in an Agroeca species.

Our documented parasitism rates for Arctic wolf spiders are certainly quite high (for Lycosidae), but not out of the range of other published studies for non-Lycosidae.  I do wonder whether we will continue to find high egg parasitism rates if more species were examined in detail – certainly a fertile area of study.  Related to this, what are the population-level consequences of this interaction?  What is the relationship between spider densities and parasitism rates?  Although Joe and I did try to speculate on this, our data are preliminary – again, a key area for future research.

Screen shot 2013-01-23 at 12.20.40 PM

In the Arctic context, we will continue to uncover fascinating food-web dynamics.  Our research group has already been thinking seriously about this – Crystal Ernst has written a nice post about the idea of an ‘inverse trophic web’ (i.e., predator-dominated) in the Arctic, and a fair amount of my future research will pursue this avenue of research.

Pique your interest…?  Why not think about graduate school in my lab, and study Arctic arthropod biodiversity?

References:

Bowden, J., & Buddle, C. (2012). Egg sac parasitism of Arctic wolf spiders (Araneae: Lycosidae) from northwestern North America Journal of Arachnology, 40 (3), 348-350 DOI: 10.1636/P11-50.1

Cobb, LM & Cobb VA (2004). Occurrence of parasitoid wasps, Baeus sp and Gelis sp., in the egg sacs of the wolf spiders Pardosa moesta and Pardosa sternalis (Araneae: Lycosidae) in southeastern Idaho. Canadian Field Naturalist 118(1); 122-123.

Baarlen, P., Sunderland, K., & Topping, C. (1994). Eggsac parasitism of money spiders (Araneae, Linyphiidae) in cereals, with a simple method for estimating percentage parasitism of spp. eggsacs by Hymenoptera Journal of Applied Entomology, 118 (1-5), 217-223 DOI: 10.1111/j.1439-0418.1994.tb00797.x

Finch, O. (2005). The parasitoid complex and parasitoid-induced mortality of spiders (Araneae) in a Central European woodland Journal of Natural History, 39 (25), 2339-2354 DOI: 10.1080/00222930500101720

ResearchBlogging.org