Landscape structure, insect herbivory, and ecosystem services

I’m pleased to announce a new publication to come out of the lab, with lead author Dorothy Maguire and co-authored by Elena Bennett and Patrick James. In this work, Dorothy ponders and writes about the broader implications of insect herbivory. More specifically, how insect herbivory is affected by landscape connectivity (i.e., the degree to which habitats are linked to each other), and how plant-feeding insects may relate to ecosystem services (i.e., the values and services that humans get from our natural systems).

Female (l) and male (r) Gypsy moth, caught in the act.

Important insects when, as caterpillars, eat a lot of foliate: Female (l) and male (r) Gypsy moth, caught in the act.

We certainly know that insects can do all kinds of damage to plants in ecosystems, but do insects in more (or less) connected habitats do more damage? To address this question Dorothy scoured the literature and got the relatively unsatisfactory answer of “sometimes”: 49% of the papers suggest increased connectivity relates to more insect herbivory and 28% of the papers show less herbivory in more connected patches. The lack of a clear answer actually makes quite a bit of sense since every context can be quite different, and not all insects are equal. It is hard to generalize since effects in forests will not be the same as in fields, and insects that are out-breaking (i.e., with major population explosions) may be affected differently than non out-breaking species. Dorothy certainly found these contexts were important. The results were important to illustrate how we need to adapt any management options with close attention to both landscape feature and their interaction with the life-history of the herbivore.

The second part of Dorothy’s work delved deeper into the literature to ask about the effects of out-breaking versus non out-breaking herbivore species on a select suite of forest ecosystem services: effects on timber production, aesthetics, soil formation and Carbon sequestration. There were some interesting results of this and again, any particular effect of herbivory on an ecosystem service was highly sensitive to the outbreak status of the herbivore. For example, the aesthetics of a forest can be positively affected by low levels of herbivory since this may help create pleasant conditions for light infiltration to the forest floor. However, an out-breaking species may defoliate a tree more completely, thus reducing the aesthetic value. Another example is that low levels of herbivory may positively affect timber production because trees may show “compensatory” growth after light feeding by an insect. In contrast, timber production will be negatively affected by high levels of defoliation as this may reduce a tree’s ability to grow. Although some of these results may seem rather logical, Dorothy’s work was unique as it showed how the scientific literature supports the connections between a herbivore’s life-history and key ecosystem services.

Screen Shot 2015-06-11 at 6.55.21 AM

Visual representations of the hypothesized relationships between insect herbivory and ecosystem services. Specifically (a) timber production, (b) aesthetic value of forests. Graphs are divided into four sections representing positive and negative effects of herbivory on ES, during non-outbreak (low) vs. outbreak (high) levels of herbivory. Quadrants are coloured differently based on the hypothesized strength of the effect of herbivory on ES: weak (light grey), moderate (dark grey) and strong (black). Proposed relationships are derived from synthesis of the available literature. From Maguire et al.

The last part of the work was focused on building a conceptual framework – a framework that ties together landscape structure, the process of herbivory, and ecosystem services. This is meant to be a road map for any stakeholders with an interest in any or all of those factors. For example, should a forest manager be tasked with understanding how to increase or support a particular ecosystem service, she or he needs also to recognize how that service is tied to important processes such as herbivory, and the related connections to the broader landscape.

Screen Shot 2015-06-11 at 7.05.34 AM

This work is novel and important because it links the well known process of insect herbivory to concepts of ecosystem services and to the discipline of landscape ecology. The marrying of these areas is critically important as we face increasing pressures on our natural systems, and the complexity of the systems can be overwhelming. We hope this work piques more interest in this topic, and that the framework Dorothy provides is useful to all the stakeholders.

Reference:

Maguire, DY, PMA James, CM Buddle & EM Bennett Landscape connectivity and insect herbivory: A framework for understanding tradeoffs among ecosystem services. Global Ecology and Conservation. doi:10.1016/j.gecco.2015.05.006

 

An ode to graduate students

Last week I saw two of my graduate students successfully defend their PhDs. This is wonderful and exciting, and I am delighted that they are both moving on to post-doctoral research positions in other places. I am also saddened by their departures: seeing good students leave the lab creates a vacuum. This has caused me to reflect about the effect graduate students have on their supervisors:

I write, teach, research.

I see classrooms, computers, forests and fields.

I use keyboards, iPads, PowerPoint, and pipettes.

I publish or perish.

LOIs, RFPs, IFs, and h-factors.

Grants, emails, to-do lists and budgets.

Learning?

Always.

Literature and libraries can start the process,

But books and blogs barely break the silence.

It’s the tangible human that makes the difference.

My colleagues, my friends:

You are the Academy.

Do you have the answers?

How to avoid wandering alone in ivory towers?

How to slow the withering on tenured vines?

How to grasp frail tendrils of discovery?

How to find that perfect chorus of voices, words, arguments and insights?

Search again.

Find hope and optimism in our laboratories.

Open the door to the greatest discovery of all:

It’s their keen intellect, smiles, kind words or questions.

It’s crafted by their company.

Caffeine-fuelled conversations critique, criticize, challenge.

(Coffee is never bitter with graduate students)

Embracing curiosity, creativity and collaboration.

Wrangling words together: perform, propose, predict.

Execute, explain, engage.

Fieldwork, funding, fellowship.

Null hypothesis, clear objectives, conceptual frameworks.

Significance and broader impact,

Contributions to knowledge.

Contributions for humanity.

I hope I did enough; I wish for more.

Fleeting moments are now warm memories:

Catching spiders on the tundra, or caterpillars in the canopy.

Thank you, students: you teach me.

We move beyond metrics and money.

We write, we study, we learn.

We discover.

We grow.

Crystal Ernst successfully defended her PhD on 23 Feb.

Crystal Ernst successfully defended her PhD on 23 Feb.

Dorothy Maguire (middle) successfully defended her PhD on 27

Dorothy Maguire (middle) successfully defended her PhD on 27 Feb. Elena Bennett was Dorothy’s co-supervisor.

A naturalist and his moquitoes

This is another in the “meet the lab” series – here’s a feature by MSc student Chris Cloutier:

I can’t remember a time when I wasn’t fascinated by the world of creepy crawly things. For as long as I have been able to grasp and crawl I have been collecting and observing insects and spiders. Although my mother wasn’t always fond of the critters I would trek through the house, my parents were very supportive of my curiosities and did their best to nurture my interests. As a family we would go camping and fishing often, introducing me to the world outside of our backyard and ultimately landing me where I am today.
My passion for studying insects began many years ago with my first entomology course in CEGEP. After completion of that program I enrolled at Macdonald campus of McGill University. Before I even started my first semester I got my first real taste of applied entomology, when Chris Buddle hired me for several months during the summer to be his field and lab technician. Let’s just say that from that point onward I was hooked.

While studying at Mac I really started to discover where my interests were in this very diverse field. I was intrigued with the ecology and natural history of insects and the amazing things that they do. I really enjoyed learning about insect-human interaction, and for some reason I was very interested in disease transmission and parasitism and the amazing enzootic pathways they can take.

Chris Cloutier: the man, the naturalist, the legend.

Chris Cloutier: the man, the naturalist, the legend.

My Master’s research began in early 2014. I had been working for several years at the Morgan Arboretum, a forested property owned by McGill, when my employer, and now co-supervisor, Dr. Jim Fyles approached me with the idea of performing some graduate research using the Arboretum as a study area. I jumped at the idea of doing this, and we got Chris Buddle on board right away. My thesis will be analysing the temporal variation of mosquito community composition across a habitat gradient which includes suburban areas, fields and various forested sites within the Morgan Arboretum. One of the reasons for this research is the fact that in many suburban and forested areas around Montreal, mosquito densities reach near intolerable levels during the summer months. This, coupled with the increasing number of cases of arbovirus (arthropod-borne viruses) infections, such as West Nile Virus, the importance of understanding where mosquitoes are located, and when, as well as which species are present is becoming more and more important.
Collection of mosquitoes takes place for 24h once a week for the entire frost free period, typically from April to November in Montreal. The traps I use to collect mosquitoes are quite specialized and are designed to capture only females which are seeking a blood meal (the ones that we worry about on our strolls through the woods!). These traps use a combination of LED light and carbon dioxide to attract the insects. The LED lights draw in mosquitoes from quite some distance, and the CO2, produced with the help of a few kilograms of dry ice, draws them ever closer to the trap. Once in range, a tiny fan sucks them into a mesh catch-bag and they are trapped.

Chris in the field, checking a trap.

Chris in the field, checking a trap.

When not out in the field, I spend most of my time with my eyes firmly attached to a microscope, sorting, identifying, and counting mosquitoes. After my first field season, I have collected just over 43,000 mosquitoes representing 9 genera and approximately 28 species. I am now faced with the task of analysing the data and making sense of all those numbers, which in fact has revealed some interesting patterns already. I’m looking forward to heading out next spring to start all over again.

The hard work.

The hard work.

I consider myself to be a “geek of all trades” with interests in everything from birding, to plants, herps and pretty much everything in between. I rarely leave home without my binoculars, and during the summer I almost always carry some vials, an aerial net and several field guides (yes, I often get some strange looks…). I’m also a husband and more recently, a father too. My wife still hates mosquitoes but I feel her coming around slowly, and my daughter doesn’t know it yet, but she will be spending an awful lot of time outdoors with us.
Follow me on twitter @C_Cloutier15 or email me at christopher.cloutier@mail.mcgill.ca if you would like to know more about what I am up to and how things are going with my research.

Leading a discussion of a scientific paper

I’m teaching a graduate class in Entomology this term, and part of that class involves students leading discussions about scientific papers in our discipline. These discussions are typically between 60 and 90 minutes, with a small group (4-6 individuals). This post provides some advice and guidelines around how to go about doing this. That being said, this is not a ‘one size fits all’ kind of world, especially when talking about science: you may have better or alternative approaches when discussing scientific papers – please comment, and share your ideas!

1. Provide a (quick) summary of the paper:

In most cases, you want to first provide the audience a brief but accurate overview of the paper. It’s often useful to do a little research about the authors – this provides a context that may be very helpful and may prove insightful later on. For example, do the authors have a publication record that aligns with the current paper? Are the authors graduate students or post-doc (not that it matters, but it does provide context!).

The focus on the summary should be about the Research Questions / Hypothesis, and to explain these you will also need to discuss an overall conceptual framework. This means you need to know this conceptual framework very well. After providing the broader context and framework, you should quickly go over the main methods, and the key results. You should act as a guide for your audience, and take them through the key results. Try not to spend a lot of time on more trivial aspects of a paper. In general, your summary should not delve too deeply in the discussion part of the paper.

Don’t forget: you are assuming everyone in the room has read the paper, so your overall introduction should be relatively short (no more than 10 minutes). More time may be required if a concept or methodological approach is particularly complex. Try not to provide opinions or critiques of the paper at this point in time – save this for the general discussion.

2. Ask for points of clarification:

Before proceeding with detailed discussion of the paper, you should ask the audience if they require clarification on anything in the paper. You are leading a discussion and therefore considered an ‘expert’ on the paper, and as such, should be prepared to handle these points of clarification – this will most likely require you to do a bit of research on areas of the paper that you do not understand!  It’s important you you make it clear that you are not starting a detailed critique (yet); you are first making sure that people all understand the critical ‘nuts and bolts’ of the paper.

3. Leading a discussion:

The majority of the time should be spent on the actual discussion.  There are many ways to do this, but here are some tips:

  • Try not to let your own opinion of the paper distract or take over – your goal is to get other people to reveal their own views; these may or may not agree with your own views! Be welcoming and accommodating to other people’s opinions and viewpoints. Never make anyone feel small or stupid, even if they make a goofy mistake.
  • That being said, make sure that you do have an opinion, and be willing to share it at some point
  • Prepare a list of questions that you could ask other people if the discussion needs help to get started. Always try to find positive points in a paper, even if the paper is, overall, very weak. Similarly, try to bring out negative features even if the paper is strong.  This means you have to sort out strong and negative parts of a paper for yourself (well ahead of time)
  • It’s sometimes a good idea to first go around the room and ask for something that people felt was strong and positive about the paper, and then do this again but ask for points of constructive criticism about the paper.
  • Don’t hesitate to ask people (specifically) for their views on some sections of this paper: a gentle push may be needed to get started on discussing the specifics, but this can be fruitful.
  • Since you are chairing the discussion, don’t be afraid to take control if the discussion wanders too far from where it needs to be, and/or if the discussion gets too trivial or mired in the weeds
  • Related, whenever possible, draw the discussion back to the actual research objectives, and try to broaden the discussion out to the overarching concenptual framework: are the results generalizable to other fields? Does the paper make broad and meaningful conclusions that will be long-lived and significant?
  • Towards the end of the discussion, it may be useful to ask people how they might have done the work differently. Or, stated another way, what could have been improved?

4. Summarize the discussion:

Spend the last five minutes of your time reminding people abou the actual research objectives, and provide a concise summary of the discussion that just wrapped up. Do this in an inclusive way, and give a nod to everyone in the room: make everyone feel that their points of views and opinions are taken seriously.   Try to get an overall consensus about the general quality of the paper, and one litmus test may be whether or not you would cite the paper in your own work, and in what context.

Meet the lab: Elyssa Cameron

Here’s another in the “Meet the lab” series – written by Master’s student Elyssa Cameron.

Like many in my field, my love of nature and the creatures which inhabit it began much earlier than I can remember. From camping trips to day camps to museums and everything in between, I have always been passionate about understanding the world around me. Whether I was catching butterflies, trying to identify an elusive bird, exploring a new place or simply basking the in the beauty and wonder of an unaltered landscape, I knew that I wanted to be an advocate for nature.

Elyssa

Elyssa Cameron, with a furry friend.

In 2011, this led me to pursue an undergraduate degree at McGill University in Environmental Biology, specializing in wildlife. Here I learned the skills and thought processes that would help guide me on my journey. This is also where I feel in love with ecology and ecosystem dynamics. I was humbled by the enormous web of complexity which governs our world and sought to discover where exactly my interests lay. My search took me to South Africa, where I spent 3 week learning about wildlife management, game ranching, governance of national parks, and the challenges in maintaining healthy, safe, sustainable populations and ecosystems. It was during this trip that I realised that the management and conservation of any ecosystem needed to rest upon a solid understanding of the ecology of the system as well as the interactions of individual species, between different species and between species and their environment. Without this basic knowledge of how something works, one cannot hope to protect it.

giraffe

With this newfound drive for management and conservation through a better understanding of ecosystem ecology, I signed on to do a Master’s project with Chris Buddle (McGill University) on arctic arthropods in 2014. Having never truly worked on insects and spiders before, I knew such an undertaking would be a challenge; but one that I was excited to take on! The aim of this project is to establish a more comprehensive long-term ecological monitoring program in Cambridge Bay, Nunavut, by linking patterns of vegetation and habitat diversity to arthropod diversity. In this way, we can examine the arctic ecosystem in a more complete way and not as a series of individual pieces. This will allow for more effective management in this rapidly changing ecosystem and will hopefully provide more predictive power for models and policies.

However, to obtain these baseline conditions, we must first collect the data. This took me on my second great adventure – a summer in Canada’s high arctic! For those of you who have not yet experienced the vast and diverse beauty of Canada, it is something I cannot recommend enough. But be forewarned, there are LOTS of bugs – which was great for the Bug Team! Working in association with CHARS (Canadian High Arctic Research Station) the Bug Team was part of a unit of researchers set on better understanding the arctic ecosystem and promoting interdisciplinary collaboration. We sampled spiders, flies, beetles, wasps and others to try and get the most complete view of the species diversity and community structure as we could in such a short summer.

Arctic

Elyssa’s Arctic Adventures!

While there, we also did a number of community outreach programs to try and get the locals interested in science. We participated in a science night, made insect and butterfly collections to leave at the high school and Sarah Loboda (one of my wonderful lab mates!) organized day camp activities for the kids.

Now back at McGill, I spend most of my days in the lab looking through a microscope. With the general sorting of samples now complete, I am about to embark on my biggest challenge yet: species identifications! Both scary and exciting; but with the great support system here, I’m not worried.

As of January, I will also be co-supervising an intern from the Vanier Wildlife Technicians program with Chris Cloutier (the lab’s resident mosquito expert).

Meet the lab: Sarah Loboda

This is the second in a series of posts that will introduce the members of the arthropod ecology lab. This one is about Sarah Loboda:

I am not one of those people who can reflect back on my childhood with memories of chasing butterflies with a net. Instead, I could be found shouting loudly when seeing a spider in the bathtub. Things change… today I study community ecology of Arctic arthropods, and have a deep passion for arthropod of all kinds, from spiders to butterflies and flies.

Sarah, with a butterfly net.

Sarah, with a butterfly net.

My interest in entomology began as a challenge, and I love challenges! When I was an undergrad at Université du Québec à Rimouski, Québec, a tackled the big challenge of learning to identify insects. During my undergrad, I participated in several research projects where I could encounter biodiversity of insects and spiders and I developed a curiosity and a fascination about arthropods, particularly those living in extreme Arctic environments. Arthropods are ectotherms, yet they survive, year-round, in a region where the climate is very harsh. I quickly realized that the taxonomy was not the only interesting aspect in entomology. I wanted to identify arthropods in order to do research on community ecology. During the final year of undergrad in Rimouski, I decided to do a research project on the community ecology of spiders in salt marshes. As part of this project, I met Chris Buddle who encouraged my passion for entomology and the Arctic and I was lucky to do a Master’s project on spiders in the Canadian North as part of the Northern Biodiversity Program.

I take all opportunities to do outreach, and talk about insects and spiders with anyone who is interested. I am also involved in different societies, including the Entomological Society of Canada, and the Entomological Society of Québec, for which I’m the student representative. I love to volunteer and organize activities for members. Being the mother of two children, I also like to share my passion about arthropods with my kids, their friends and classmates in schools or daycares.

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

Sarah in front of her awesome poster at an Entomological Society of Canada meeting. This poster was a runner-up for a prize!

I have just started the second year of my Ph.D. I work with the veritable goldmine of data that has been collected from Zackenberg (northeast Greenland), where a long term monitoring program of arctic biodiversity has existed since 1996. My primary research objective is to assess temporal changes of the Arctic fly communities in this region, using the Muscidae and Phoridae families as model study taxa. The second objective of my research project will be to assess phenotypic and genetic changes over the last two decades in two species of Arctic muscids from Zackenberg. For this project, I am co-supervised by Jade Savage, a muscids expert from Bishop’s University, and Toke Høye from Aarhus University.

What is the motivation for pursuing graduate school?

Last week an interesting hashtag was floating around twitter:  #whyididaphd.  It was great to see reflections on this topic, and during our most recent lab meeting, I asked my students why they were pursuing advanced research-based degrees, and here are some of their responses:

  • Graduate school allows an opportunity for freedom to do the things you find interesting, every day.
  • Doing research means you can follow your interests and curiosity.
  • Doing a MSc is a perfect transition between an undergraduate degree and whatever might come next!
  • Doing research is an opportunity to work independently, and this is important to me.
  • Research is about gaining knowledge and learning on  your own. It’s like the best kind of drug: you can get hooked and it’s good for you, and it never ends.
  • Graduate school develops my network of collaborators, and I need this as I enter the work force.
  • I want to do things that are relevant, and are my ‘own’. Research allows this.
  • Doing an advanced degree was an important career stage, because I need it in order to do what I really want to do into the future (i.e., academic position).

These reflections were insightful, and showed that the students had wonderful motivations for pursing advanced degrees in a research-based laboratory. I agree that doing a MSc or PhD is perfect for people who are curiosity-driven, and who appreciate the independent nature of the work.

I had two responses to #whyididaphd. The first one certainly reflects my thinking now:

Screen Shot 2014-10-08 at 1.12.23 PM

The second response is a little more honest, and reflects my thinking at the time I decided to continue with research, about 20 years ago:

Screen Shot 2014-10-08 at 1.13.21 PM

Is it wrong to pursue a MSc or PhD “just because there’s nothing better to do”, or “because I don’t have another plan and I like University”?  We had a heated debate about this, and the lab was divided. One argument is that it’s a total waste of time, energy, money and resources to pursue a MSc or PhD “just because”. Sure it’s nice to stay in a University after the undergrad degree is done, but why pursue it unless you know you need that advanced degree!  Have a plan, have a career goal, and if a MSc or PhD is part of that plan, pursue graduate school.

In contrast, if you don’t have a plan, or a specific career in mind, perhaps graduate school is the *perfect* place to develop your research skills in an exciting, and familiar environment. Graduate school is a perfect transition to many, many careers, so if there is nothing else on your horizons, keep on trucking along at a University! If you are a curious person, and independent thinker, it’s an ideal learning environment.

I suspect many people fall somewhere in the middle (I think that was the case for me).  I always felt I might eventually like a career at a University, and since I seemed to like research, and be good at it, pursuing graduate school was a natural progression. So, even if the motivations for doing graduate school aren’t always based on a clear career path, those motivations can still be more than enough to give it a try.

I’ll finish by expanding that last point: “give it a try” does not mean “stick with it even when it’s not working”.  It’s important to know when to quit if grad school is not for you. It’s an awfully difficult and frustrating process if it’s not going well. Give it a try if it floats your boat, or it’s what you need. However, also know when to quit.

 

more